
I n s t r u m e n t s I n c.
P E R S I S T O R 254-J Shore Road, Bourne, MA 02532, USA

Tel: 508-759-6434 Fax: 508-759-6436
www.persistor.com info@persistor.com

Data Acquisit ion and Storage lutions for Industry and Science

 So

CF2 API Reference

Copyright © 2003 Persistor Instruments Inc., All Rights Reserved
Version 1.0 Jan 24, 2003

CF2 API Reference

Contents
FUNCTION FAMILY COMMAND PREFIX Pg

ATA Device Drivers ATA… 3

BigIDEA IDE Drivers BIA… 5

BIOS Functions BIOS… 6

Checksums and Cyclic Redundancy Check Functions CheckSum…, CRC… 8

Chip Select Wrapper Functions CS8…, CS10… 11

CompactFlash Low Level Drivers CFCardDetect, CFEnable, CFGetDriver 13

Console I/O Functions and Macros CIO…, getch, kb…, put…, uprintf 14

DOS Directory Functions DIR… 20

Interrupt and Exception Vector Wrapper Functions IEV… 22

LED Signal Functions LED… 23

Periodic Interrupt Timer Functions PIT… 25

PicoDOS Initialization and Coordination Functions Pico… 27

PicoZOOM Functions PZ… 28

Pin I/O Drivers, Functions, and Macros Pin…, PIO… 29

Ping-Pong Buffer Functions PPB… 35

Power Management Drivers and Functions LP…, QSM…, PWR… 38

Query/Reply Functions QR… 41

Queued PicoBUS (QSPI) Drivers and Functions QPB… 45

Real Time Clock Drivers and Functions RTC… 49

Serial Controller Interface Drivers and Functions SCI…, EIA… 52

System Clock Timing Functions TMG… 60

Table Driven Command Processor Functions Cmd… 61

Time Processing Unit TU… 65

Utility Functions execstr, flogf, Initflog, pdcfinfo, picodosver, sscan 71

Virtual EEPROM Functions VEE… 74

ABOUT THIS DOCUMENT
This API reference is meant to assist an experienced programmer who is familiar with the CF2 software
architecture. A companion document entitled; “CF2 Programmer’s Guide” discusses issues involved with
application development.

P E R S I S T O R
I n s t r umen t s I nc.

2 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

ATA Device Drivers

ATACapacity -- Return the PC Card capacity in total sectors

Description: This function returns the drive or media capacity as well as additional information about the
number of heads and sectors per track for LBA translation. It also optionally returns card or
drive information table which has both generic and manufacturer specific fields. Refer to the
device/media manuals for exact interpretation.

Prototype:
short ATACapacity(ATADvr iodvr, ulong *sectors, ushort *spt, ushort *heads, void
**info);

Inputs: ATADvr see following notes
iodvr pointer to the physical device driver
*sectors pointer to hold the total number of LBA sectors available
*spt pointer to hold sectors per track
*heads pointer to hold the logical number of heads
**info pointer to a ATA_SECTOR_SIZE buffer pointer that can accept the drive information
table

Returns: Returns-zero for success or ATA error bits

Notes: pass zeros for everything except *sectors to just quickly determine capacity

ATAReadSectors -- Read logical drive sector(s)

Description: This function reads one or more 512 byte sectors from the card or disk into a memory buffer.

Prototype: short ATAReadSectors(ATADvr iodvr, ulong sector, void *buffer, short count);

Inputs: ATADvr see following notes
iodvr pointer to the physical device driver
sector first LBA sector to read
*buffer pointer to memory that will contain read data
count number of ATA_SECTOR_SIZE sectors to read

Returns: Returns-zero for success or ATA error bits

Notes: Use multi-sector reads for best performance

P E R S I S T O R
I n s t r umen t s I nc.

3 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

ATAWriteSectors -- Write logical drive sector(s)

Description: This function writes one or more 512 byte sectors from a memory buffer onto the card or disk.

Prototype: short ATAWriteSectors(ATADvr iodvr, ulong sector, void *buffer, short count);

Inputs: ATADvr see following notes
iodvr pointer to the physical device driver
sector first LBA sector to write
*buffer pointer to memory containing data to write
count number of ATA_SECTOR_SIZE sectors to write

Returns: Returns-zero for success or ATA error bits

Notes: Use multi-sector writes for best performance

ATA functions – Additional Notes

Inputs: typedef short (*ATADvr)(void *);

All of the functions in the ATA group make use of an anonymous structure pointer of type
ATADvr to translate from generic ATA operations to actual device I/O. This first parameter to all
of the ATA functions must contain a valid ATADvr pointer from at least one call to an
XXGetDriver() function. () function.

Returns: All of the ATA functions return zero to indicate success, or a nonzero value to indicate some type
of failure. The exact interpretation of the failure code varies depending on the physical device,
but for the CompactFlash, the bits in the lower byte identify one or more of the following errors,
and the upper byte may contain extended error codes that are not documented here, but can be
found in the card or disk manufacturers ATA technical manuals.
0x80 card busy
0x40 card not ready
0x20 data request failure
0x10 extended error request failed
0x04 no media present
0x0F operation failed to complete
0x03 invalid argument

P E R S I S T O R
I n s t r umen t s I nc.

4 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

BigIDEA IDE Driver

BIAGetDriver -- Return the low level BigIDEA driver (for the ATA driver)

Description: Return the low level BigIDEA driver (for the ATA driver)

Prototype: ATADvr BIAGetDriver(BIADEV device);

Inputs: device is the enumeration of the device

Returns: Address of driver

BIAGetStatusString -- Return the current drive status

Description: Return the current drive status

Prototype: char *BIAGetStatusString(void);

Inputs: None

Returns: A pointer to a string representing drive status flags as a formatted 18 char string

BIAPowerUp -- Power up the BigIDEA and spin up the drive

Description: Apply power and spin-up the drive and, optionally, wait for completion.

Prototype: bool BIAPowerUp(bool waitready);

Inputs: waitready is TRUE if you want the program to wait for the drive to spin-up and FALSE
otherwise.

Returns: If waitready == TRUE, returns TRUE if the drive spins up without a timeout, Otherwise returns
FALSE.
If waitready == FALSE, immediately returns TRUE without care to the status.

BIAShutDown -- Turn off the drive and power down the BigIDEA

Prototype: void BIAShutDown(void);

Inputs: None

Returns: Nothing

P E R S I S T O R
I n s t r umen t s I nc.

5 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

BIOS Functions

BIOSHandlerAddress -- Return a BIOS handlers actual address

Description: The BIOSHandlerAddress macro invokes the _BIOSHandlerAddress function to return

Prototype: vptr _BIOSHandlerAddress(short drvrid);

Inputs: drvrid is the driver table id of the function whose address you seek.

Returns: Returns the address in the specified slot of the driver table.

Notes: 1. use the BIOSHandlerAddress macro instead of the function call
2. see PICOHandlerAddress for similar operations with PicoDOS functions
3. The drvrid argument to _BIOSHandlerAddress() is a non-obvious enumeration constant
corresponding to the relative location of the target API function in the BIOS function list in the
header. You're much better off using the BIOSHandlerAddress macro which lets you simply
specify the name of the API function whose address you want to find.

BIOSPatchInsert -- Insert a new handler in the BIOS table

Description: The BIOSPatchInsert macro invokes the _BIOSPatchInsert function to let you patch specific
BIOS API functions in the BIOS jump table.

Prototype: vptr _BIOSPatchInsert(short drvrid, vptr newf);

Inputs: drvrid is the driver table id of the function you wish to replace.
newf is a volatile pointer to the new address for the given BIOS routine.

Returns:
Returns the former contents of the specified driver table slot for future reference or for
"unpatching."

Notes: 1. The drvrid argument to _BIOSPatchInsert () is a non-obvious enumeration constant
corresponding to the relative location of the target API function in the BIOS function list found in
the header. You're much better off using the BIOSPatchInsert macro which lets you simply
specify the name of the API function you want to patch.

2. The nature of the BIOS jump table is described in the CF2 Programmers Manual.

BIOSReset -- Reset the Persistor

Description: This function forces a hardware reset which includes assertion of the external /RESET signal. On
completion, the CF2 will take whatever reset action has been ordered by the PBM boot
command. If the reset action goes beyond entering PBM, the BIOS will be completely re-
initialized. If PicoDOS is invoked, PicoDOS will also be completely re-initialized.

This is the cleanest way to terminate a running application if the BIOS or PicoDOS vectors have
been altered or you want to guarantee the state of the hardware for the next program run.

Prototype: void BIOSReset(void);

BIOSResetToPicoDOS -- Reset the Persistor and force to PicoDOS

Description: This function resets the Persistor as described for the BIOSReset() function above, but forces
the CF2 to jump to 0xE10000 (PicoDOS) regardless of the boot settings.

Prototype: void BIOSResetToPicoDOS (void);

P E R S I S T O R
I n s t r umen t s I nc.

6 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

BIOSVersionCheck -- Confirm application and BIOS compatability

Description: This function exists to help programs determine at runtime if they are compatible with the
currently installed version of the BIOS. By calling this function with the version information
from the initial build of the software, a developer can make a runtime determination of the
ability or lack thereof of their program to run on that specific Persistor.

Prototype: bool BIOSVersionCheck(short ver, short rel, char *id, bool reset);

Inputs: ver is the major release number of the BIOS at build time
rel is the minor release number of the BIOS at build time
id
reset nnn

Returns:
Returns TRUE if the parameters supplied match the currently installed version of the BIOS,
FALSE otherwise.

P E R S I S T O R
I n s t r umen t s I nc.

7 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Checksums and Cyclic Redundancy Check Functions

Summary of functions

Checksum vs. CRC Checksums are simple and fast. CRCs provide better error detection but are slower

16 bit vs. 32 bit Because the 68332 has a 32 bit CPU, there is virtually no performance penalty associated
with using the full 32 bit routines.

16 bit CRC catches 99.998% of all errors and is appropriate for data blocks up to 4KB.

32 bit CRC catches 99.999999977% of all errors and is appropriate for blocks up to 64KB.

CheckSum16
CheckSum32

Use these to compute "on-the-fly" checksums for short data streams (like UART
characters). Use checksums where speed and function pointer access are the paramount
objectives.

CheckSum16Block
CheckSum32Block

Use these to compute checksums for small data blocks (like the flash). Use checksums
where speed and function pointer access are the paramount objectives.

CRC16 Use this routine to compute "on-the-fly" CRCs for data streams of 4kB or less.

CRC32 Use this routine to compute "on-the-fly" CRCs for data streams of 64kB or less.

CRC16Block Use this routine to compute CRCs for data blocks of 4kB or less.

CRC32Block Use this routine to compute CRCs for data blocks of 64kB or less.

CheckSum16 -- Update a running 16 bit checksum

Description: Computes and returns an updated unsigned short checksum derived from an unsigned byte
value and an unsigned short running checksum. The running checksum is typically zero for the
first call, and the latest returned value for subsequent calls. The algorithm uses simple
addition primitives and has deterministic timing.

Prototype: ushort CheckSum16(uchar value, ushort runningSum);

Inputs: value is the next byte to checksum
runningSum is the running checksum from a previous call, usually initialized to zero for the
first call

Returns: the updated checksum, either the final value, or the next value to pass as the running sum

Notes: Called automatically at BIOS startup

CheckSum16Block -- Compute a 16 bit checksum for a block of data

Description: Computes and returns an unsigned short checksum on a block of memory. Pass it a pointer to
the start of the block, the number of bytes to compute, and a starting checksum value
(typically zero). The algorithm uses simple addition primitives and has deterministic timing.

Prototype: ushort CheckSum16Block(const void *data, ulong len, ushort runningSum);

Inputs: data points to the start of the data block to CRC
len is the count in bytes to CRC
runningSum is the running checksum from a previous call, usually initialized to zero for the
first call

Returns: the computed checksum

Notes: Called automatically at BIOS startup.

P E R S I S T O R
I n s t r umen t s I nc.

8 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

CheckSum32 -- Update a running 32 bit checksum

Description: Computes and returns an updated unsigned long checksum derived from an unsigned byte value
and an unsigned long running checksum. The running checksum is typically zero for the first
call, and the latest returned value for subsequent calls. The algorithm uses simple addition
primitives and has deterministic timing as shown below.

Prototype: ulong CheckSum32(uchar value, ulong runningSum);

Inputs: value is the next byte to checksum
runningSum is the running checksum from a previous call, usually initialized to zero for the
first call

Returns: the updated checksum, either the final value, or the next value to pass as the running sum

Notes: Called automatically at BIOS startup

CheckSum32Block -- Compute a 32 bit checksum for a block of data

Description: Computes and returns an unsigned short checksum on a block of memory. Pass it a pointer to
the start of the block, the number of bytes to compute, and a starting checksum value (typically
zero). The algorithm uses simple addition primitives and has deterministic timing.

Prototype: ushort CheckSum16Block(const void *data, ulong len, ushort runningSum);

Inputs: data points to the start of the data block to CRC
len is the count in bytes to CRC
runningSum is the running checksum from a previous call, usually initialized to zero for the
first call

Returns: the computed checksum

Notes: Called automatically at BIOS startup

CRC16 -- Update a running 16 bit CCITT CRC

Description: Computes and returns an updated unsigned short cyclic redundancy check derived from an
unsigned byte value and an unsigned short running CRC. The running CRC is typically zero for
the first call, and the latest returned value for subsequent calls. The algorithm is table driven
and has deterministic timing.

Prototype: ushort CRC16(uchar value, ushort runningCRC);

Inputs: value is the next byte to CRC
runningCRC is the running CRC from a previous call, usually initialized to zero for the first call

Returns: the updated CRC, either the final value, or the next value to pass as the running CRC

Notes: Called automatically at BIOS startup

P E R S I S T O R
I n s t r umen t s I nc.

9 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

CRC16Block -- Compute a 16 bit CCITT CRC for a block of data

Description: Computes and returns an unsigned short cyclic redundancy check on a block of memory. Pass it
a pointer to the start of the block, the number of bytes to compute, and a starting CRC value
(typically zero). The algorithm is table driven and has deterministic timing. This is called
automatically at BIOS startup.

Prototype: ushort CRC16Block(const void *data, ulong len, ushort runningCRC);

Inputs: data points to the start of the data block to CRC
len is the count in bytes to CRC
runningCRC is the running CRC from a previous call, usually initialized to zero for the first call

Returns: the computed CRC

CRC32 -- Update a running 32 bit CCITT CRC

Description: Computes and returns an updated unsigned short long cyclic redundancy check derived from an
unsigned byte value and an unsigned short running CRC. The running CRC is typically zero for
the first call, and the latest returned value for subsequent calls. The algorithm is table drive and
has deterministic timing as shown below. This is called automatically at BIOS startup.

Prototype: ulong CRC32(uchar value, ulong runningCRC);

Inputs: value is the next byte to CRC
runningCRC is the running CRC from a previous call, usually initialized to zero for the first call

Returns: the updated CRC, either the final value, or the next value to pass as the running CRC

CRC32Block -- Compute a 32 bit CCITT CRC for a block of data

Description: This function computes and returns an unsigned long cyclic redundancy check on a block of
memory. Pass it a pointer to the start of the block, the number of bytes to compute, and a
starting CRC value (typically zero). The algorithm is table drive and has deterministic timing as
shown below. This is called automatically at BIOS startup.

Prototype: ulong CRC32Block(const void *data, ulong len, ulong runningCRC);

Inputs: data points to the start of the data block to CRC
len is the count in bytes to CRC
runningCRC is the running CRC from a previous call, usually initialized to zero for the first call

Returns: the computed CRC

CRCInit -- Initialize the CRC tables

Description: The 16 and 32 bit CRC routines work from table lookup algorithms rather than performing full
computations for each request. These tables are setup by this routine, which is automatically
called as part of the drivers initialization performed during the BIOS initialization. You will never
need to explicitly call this function, and its description is included here so that when you see this
function listed in the function table, you won't wonder if this is something you need to do.
Calling this function more than once has no effect. This is called automatically at BIOS startup.

Prototype: void CRCInit(void);

P E R S I S T O R
I n s t r umen t s I nc.

10 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Chip Select Wrapper Functions

CS10isEClock -- Define CS10 for its alternate ECLOCK function (default is chip select)

Description: When in ECLK mode, CS10 simply outputs a clock at one eighth the frequency of the system
clock. This function allows the user to switch between the two functions of the CS10 pin.

Prototype: void CS10isEClock(bool isECLK);

Inputs: isECLK is a boolean that is TRUE if CS10 is to be used as ECLOCK

Notes: Persistor recommends that new users do not use CS10 as an ECLK output if sandwich cards will
be used.

CS10Options -- Define the CS10 R/W access and wait states

Description: This function is called after calling CS10Setup to specify the characteristics of the device at
CS10. This function tells the system whether the device can read, write or both, whether the
chip select should go low with the address strobe or the data strobe and how many wait states
to use during transactions.

Prototype: void CS10Options(bool canRead, bool canWrite, bool dsSync, short waits);

Inputs: canRead is a boolean that is TRUE if the device can be read from
canWrite is a boolean that is TRUE if the device can be written to
dsSync specifies whether the chip select should go low with the address strobe or the data
strobe.
waits is the number of wait states to use with this device.

CS10Setup -- Setup CS10

Description: Setup CS10 address range and access width.

Prototype: void CS10Setup(ulong baseAddr, long size, bool is16bit);

Inputs: baseAddr is the address where you would like your memory mapped peripheral to reside.
size is the amount of address space above the baseAddr that you would like to reserve for the
specified device.
is16bit is a boolean that is TRUE if the device is 16 bits wide.

CS10GetWaits -- Return the wait states setting for CS10

Description: Returns the number of wait states for CS10 at the current clock setting.

Prototype: short CS10GetWaits(void);

Inputs: None

Returns: Number of wait states

P E R S I S T O R
I n s t r umen t s I nc.

11 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

CS8Options -- Define the CS8 R/W access and wait states

Description: This function is called after calling CS8Setup to specify the characteristics of the device at CS8.
This function tells the system wither the device can read, write or both, whether the chip select
should go low with the address strobe or the data strobe, and how many wait states to use
during transactions.

Prototype: void CS8Options(bool canRead, bool canWrite, bool dsSync, short waits);

Inputs: canRead is a boolean that is TRUE if the device can be read from
canWrite is a boolean that is TRUE if the device can be written to
dsSync specifies whether the chip select should go low with the address strobe or the data
strobe.
waits is the number of wait states to use with this device.

CS8Setup -- Setup CS8

Description: Setup CS8 address range and access width.

Prototype: void CS8Setup(ulong baseAddr, long size, bool is16bit);

Inputs: baseAddr is the address where you would like your memory mapped peripheral to reside.
size is the amount of address space above the baseAddr that you would like to reserve for the
specified device.
is16bit is a boolean that is TRUE if the device is 16 bits wide.

CS8GetWaits -- Return CS8 wait states setting for CS8

Description: Return CS8 wait states for CS8 at the current clock .

Prototype: short CS8GetWaits(void);

Inputs: None

Returns: Number of wait states

P E R S I S T O R
I n s t r umen t s I nc.

12 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

CompactFlash Low Level Drivers

CFCardDetect -- Return true if a card is inserted

Description: This function returns TRUE if a memory card is inserted in the CompactFlash header.

Prototype: bool CFCardDetect(void);

Returns: TRUE if a card is in the CompactFlash header, FALSE if it is not

Notes: this is simply an electro-mechanical check and does not interrogate the card to determine its
viability

CFEnable -- Enable or disable the CompactFlash card to save power

Description: Turns the CompactFlash card on and off

Prototype: void CFEnable(bool on);

Notes:

CFGetDriver -- Return the low level CompactFlash driver (for the ATA driver)

Description: The function returns an anonymous pointer that is used by the ATA driver to access the actual
CompactFlash I/O primitives. Refer to the ATA section for more information..

Prototype: void *CFGetDriver(void);

Notes:

P E R S I S T O R
I n s t r umen t s I nc.

13 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Console I/O Functions and Macros

Summary of Console I/O Functions and Macros The Console I/O functions provide patchable low level
access to your routines that interact with a user through a console interface. By default, all of these functions
work through the 68332 SCI (Serial Controller Interface), and all the PicoDOS command shell functions work
through CIO functions, as do the default standard library console functions.

CIOdrain Wait for all transmissions to complete

CIOgetc Wait for, and return the next character

CIOgetq Return non-zero count if input data is available

CIOgets Input line with minimal editing features

CIOhexdump Dump memory in hex and ASCII to the console

CIOiflush Flush any pending input data

CIOoflush Discard any queued transmit characters

CIOprintf Simple printf to console

CIOputc Send a character

CIOputs Send zero terminated string

getch Wait for and return the next byte

kbflush Empty the input buffer and return

kbhit Detect the availability of a character on the UART

putch Writes a byte out the main UART

putflush Wait for all transmission to complete

putstr Write a NULL terminated string to the main UART

uprintf A clone of stdio's printf without floating point support

P E R S I S T O R
I n s t r umen t s I nc.

14 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Below are macros defined in <_cfx_console.h> along with their derivations.
Red items are documented in this Console section
Blue items are documented in the SCI section

MACRO MAPS to MACRO MAPS TO FUNCTION USES BY DEFAULT

kbhit() cgetq() CIOgetq() SCIRxQueuedCount()

getch() cgetc() CIOgetc() SCIRxGetChar()

kbflush() ciflush() CIOiflush() (SCIRxGetCharWaitIdle(1) !=

putch(c) cputc(c) CIOputc(c) SCITxPutChar(c)

putflush() cdrain() CIOdrain() SCITxWaitCompletion()

 coflush() CIOoflush() SCITxFlush()

 cgetclp(x) CIOgetclp(x) SCIRxGetChar() + low power

 cgetclp(x) CIOgetclp(x) SCIRxGetChar() + low power

getstr(s,n) cgets(s,n) CIOgets(s,n) uses CIOgetc

putstr(s) cputs(s) CIOputs(s) uses CIOputc with CR-LF

uprintf cprintf CIOprintf uses CIOputc with CR-LF

 csprintf CIOsprintf uses no I/O

 cvprintf CIOvprintf uses CIOputc with CR-LF

hexdump chexdump CIOhexdump uses CIOputc/CIOgetq

 cstructdump(st) chexdump((void*)&st,(ulong)&st,1,sizeof(st))

 carraydump(ar) chexdump((void*)ar,(ulong)&ar,sizeof(*ar),sizeof(ar))

CIOdrain – Wait for all transmissions to complete

Description: Forces and waits for all characters in the transmit buffer to be transmitted.

Prototype: void CIOdrain(void);

Inputs: Nothing

Returns: Nothing

CIOgetc – Wait for, and return the next character

Description: Wait for the next input character.

Prototype: short CIOgetc(void);

Inputs: None

Returns: The character received.

P E R S I S T O R
I n s t r umen t s I nc.

15 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

CIOgetq – Return non-zero count if input data is available

Description: Returns the number of characters or zero if no input characters are waiting.

Prototype: short CIOgetq(void);

Inputs: None

Returns: Number of characters available

CIOgets – Input line with minimal editing features

Description: Get a line of input.

Prototype: short CIOgets(char *buf, short len);

Inputs: *buf is a pointer to destination storage for characters
len is the maximum length for the storage

Returns: The number of characters read

CIOhexdump – Dump memory in hex and ASCII to the console

Description: Provided to enable display of hex data to the console for debugging or whatever the need.

Prototype: bool CIOhexdump(void *mem, ulong addr, short wsize, long bytecount);

Inputs: *mem is a pointer to the start address to dump
addr is the start address to display
wsize is the display format 1 for byte, 2 for word, and 4 for long word
bytecount is the total number of bytes to display

Returns: Returns TRUE only if the display was interrupted by detection of a console input character
(which is gobbled with CIOgetc).

CIOiflush – Flush any pending input data

Description: Flushes the input buffer of any data.

Prototype: short CIOiflush(void);

Inputs: None

Returns: Returns TRUE if bytes were flushed as a result of the call, FALSE if the queue was already empty
and no data was flushed.

CIOoflush – Discard any queued transmit characters

Description: Flushes the transmit buffer.

Prototype: void CIOoflush(void);

Inputs: None

Returns: Nothing

P E R S I S T O R
I n s t r umen t s I nc.

16 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

CIOprintf – Simple printf to console

Description: A simple printf to the console but without any floating point support.

Prototype: short CIOprintf(const char *format, ...);

Inputs: Args like printf

Returns: The number of characters written or negative if there was an error

CIOputc – Send a character

Description: Send a character to the console with no '\n' to '\r'-'\n' translation.

Prototype: void CIOputc(char c);

Inputs: The character to send

Returns: Nothing

CIOputs – Send zero terminated string

Description: Send a null (zero) terminated string to the console with no '\n' to '\r'-'\n' translation.

Prototype: void CIOputs(const char *str);

Inputs: *str is a pointer to a null terminated string

Returns: Nothing

getch -- Wait for and return the next byte

Description: This function will wait for and retrieve the next incoming byte on the main UART.

Prototype: short getch(void);

Returns: Returns a short integer (16 bits) instead of a char (8 bits) as you might expect. The character
fetched is always in the LSB(low 8 bits) of the short.

The CIO functions (on which the CIO related macros are based) explicitly mask off the high byte
to appear the same as early versions.

Notes: getch() is a macro to SCIRxGetChar()
See STDIOWarning at end of this section

kbflush -- Empty the input buffer and return

Description: kbflush() will empty the receive buffer and return immediately regardless of buffer contents or
buffering mode.

Prototype: void kbflush(void);

Notes: kbflush() is a macro to (SCIRxGetCharWaitIdle(1) != 1)
See STDIOWarning at end of this section

P E R S I S T O R
I n s t r umen t s I nc.

17 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

kbhit -- Detect the availability of a character on the UART

Description: This function returns nonzero if there is a character available to receive on the main serial port.
It's behavior depends also on the buffering mode currently in effect. In interrupt-driven mode,
kbhit() should return the number of characters available. In polled mode, kbhit() will return
either 0 or non zero if there is a character available.

Prototype: short kbhit(void);

Returns: Returns TRUE if there is a character available, FALSE if there is not. (see notes)

Notes: kbhit() is a macro to SCIRxQueuedCount()
See STDIO Warning at end of this section

putch -- Writes a byte out the main UART

Description: This command takes the LSB of data and puts it in the transmit queue of the main UART. If the
SCI is in polled mode, putch() will wait for the transmit queue to be empty and then write the
LSB of data to the main UART. The MSB of data is always ignored.

Prototype: void putch(ushort data);

Inputs: data is a ushort, the LSB of which is the character you wish to transmit.

Notes: putch(c) is a macro to SCITxPutChar(c)
See STDIO Warning at end of this section

putflush -- Wait for all transmission to complete.

Description: This will wait for the transmit buffer to be empty and then return. Behavior is the same
regardless of buffering mode, however timing may vary.

Prototype: void putflush (void);

Notes: putflush() is a macro to SCITxWaitCompletion()
See STDIO Warning at end of this section

putstr -- Write a NULL terminated string to the main UART

Description: Writes the NULL terminated string pointed to by str to the transmit queue of the main UART.
putstr() will not append any characters to the end of any string passed to it, however it will
replace any "newline" characters (/n) already in the string with CRLF sequences before inserting
it into the buffer.

Prototype: void putstr (const char *str);

Inputs: str is a pointer to a NULL terminated string.

Notes: putstr(s) is a macro to SCITxPutStr(s)
See STDIO Warning at end of this section

P E R S I S T O R
I n s t r umen t s I nc.

18 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

uprintf -- A clone of stdio's printf without floating point support

Description: Provides the same functionality as the ANSI C library function printf() with respect to the main
UART, excepting floating point number display support. The types float, double and long long,
cannot be output by uprintf(). Full documentation of the printf() function and its many format
specifiers and conventions is beyond the scope of this manual, please see an ANSI function
reference for a more detailed description of printf() usage.

Prototype: void uprintf (const char *format, ...);

Inputs: See ANSI C documentation of printf function arguments and behavior.

Notes: uprintf() is a macro to SCITxPrintf ()
See STDIO Warning at end of this section

STDIO Warning

The ANSI C I/O libraries provided with the CF2 are, for the most part, even higher level wrappers to these
driver functions. However, in an effort of duplicate exactly the behavior of the ANSI stdio system, the stdio
functions often provide software buffering and queues. While you should feel free to use and inter-mingle
both these driver level functions and stdio functions, it should be noted that due to the software buffering
used by the stdio library, the outcome of intermingling these two groups of functions can yield unexpected
results. If you, as a developer, choose to use both libraries, you should be careful to flush the buffers of each
subsystem (driver calls and stdio) before using the other. Not doing so will not cause any fatal problems, but
can cause confusion. For instance, if you were using the stdio printf function, and then immediately followed it
with a driver call that also output data to the serial port, it is likely that the data output by the driver call
would appear on the serial port before the data printed with stdio printf.

P E R S I S T O R
I n s t r umen t s I nc.

19 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

DOS Directory Functions

DIRFindFirst -- Find first directory entry starting at path

Description: This is called first when trying to get directory information.

Prototype: short DIRFindFirst(char *path, struct dirent *dp);

Inputs: path is a pointer to the path from which to start the search
dp is a pointer to a directory entry structure

Returns:
An error code which could be dirErrorStart = DIR_ERRORS or dsdEndOfDir (end of directory
reached)

DIRFreeSpace -- Return free space on specified drive

Description: Return free space on specified drive

Prototype: long DIRFreeSpace(char *drive);

Inputs: drive is, for example, “c:\\”

Returns: The number of free bytes as a long

DIRFindEnd -- Conclude directory search

Description: Conclude directory search

Prototype: short DIRFindEnd(struct dirent *dp);

Inputs: dp is a pointer to a directory entry structure

Returns:
An error code which could be dirErrorStart = DIR_ERRORS or dsdEndOfDir (end of directory
reached)

DIRFindNext -- Find next directory entry

Description: Called after an initial call to DIRFindFirst using the same pointer to directory entry. dp is filled
with the information from the next directory entry.

Prototype: short DIRFindNext(struct dirent *dp);

Inputs: dp is a pointer to a directory entry structure

Returns:
An error code which could be dirErrorStart = DIR_ERRORS or dsdEndOfDir (end of directory
reached)

Notes: Called after an initial call to DIRFindFirst using the same pointer to directory entry. dp is filled
with the information from the next directory entry.

P E R S I S T O R
I n s t r umen t s I nc.

20 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

DIRMatchName -- Return true if filename matches ambiguous pattern

Description: Return TRUE if filename matches ambiguous pattern

Prototype: bool DIRMatchName(char *filename, char *pattern);

Inputs: filename the filename to compare
pattern is a pattern like “*.txt” or “*.*” or an exact filename match. This is usually used in
conjunction with DIRFindFirst and DIRFindNext comparing a pattern against the returned name
from the DIRENT structure (d_name).

Returns: TRUE is the pattern matches the filename and FALSE otherwise

DIRTotalSpace -- Return total space on specified drive

Description: Return total space on specified drive

Prototype: long DIRTotalSpace(char *drive);

Inputs: drive is, for example, “c:\\”

Returns: The total number of bytes as a long

P E R S I S T O R
I n s t r umen t s I nc.

21 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Interrupt and Exception Vector Wrapper Functions

IEV_C_FUNCT -- Define C Interrupt Handler Function

Description: This is a macro function provided for declaring a function that you wish to install as an interrupt
or exception handling routine

IEV_C_PROTO -- Declare C Interrupt Handler Function Prototype

Description: This is a macro provided for prototyping a function that you wish to install as an exception or
interrupt service routine written in C.

Example: IEV_C_PROTO(level7InterruptISR);
IEV_C_FUNCT(level7InterruptISR)
{
 // your ISR code written in C...
}

IEVInsertAsmFunct -- Install an assembler function into the VBR

Description: This function allows you to install an interrupt or exception handler written in 68332 assembly
language into the vector table. This varies from the IEVInsertCFunct in that it assumes that the
calling and return conventions for interrupt and exception handling have already been used
when the function was written. It is not necessary to use the C handler definition macros
(IEV_C_PROTO and IEV_C_FUNCT) when creating an assembly function as an interrupt or
exception handler. It is assumed that you know how to write these handlers when using this
function. You would also use this function to reinstall a previously de-installed interrupt or
exception handler whose pointer was returned by a previous call to IEVInsertCFunct or
IEVInsertAsmFunct call.

Prototype: vfptr IEVInsertAsmFunct(vfptr afp, short vector);

Inputs: afp is the pointer to the assembly routine you wish to install.
vector is the vector table "slot number" you wish to install this ISR into. (see the CPU32
documentation for more info on the vector table)

Returns:
Returns a pointer to the function that was previously installed in the target slot so that you can
restore it later if you so desire.

IEVInsertCFunct -- Install a C function into the vector table

Description: This function allows you to install an interrupt or exception handler written in C into the vector
table. You must first prototype and declare the function using the IEV_C_PROTO and
IEV_C_FUNCT macros. Normally a C compiler will return from a function using a 68000 RTS
instruction, but it an interrupt or exception handler must return with an RTE instruction to avoid
causing havoc with the registers and the stack. This is provided for with the aforementioned
macros provided.

Prototype: vfptr IEVInsertCFunct(IEVCWrapper *cfp, short vector);

Inputs: cfp is the name of the function you wish to install. It mast have been prototyped an declared
using the IEV_C_PROTO and IEV_C_FUNCT macros.
vector is the vector table "slot number" you wish to install this ISR into. (see the CPU32
documentation for more info on the vector table)

Returns:
Returns a pointer to the function that was previously installed in the target slot so that you can
restore it later if you so desire.

P E R S I S T O R
I n s t r umen t s I nc.

22 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

LED Signal Functions

LEDGetState -- Return the current LED state

Description: Return the current LED state

Prototype: ushort LEDGetState(ushort lrLED);

Inputs: LEDleft or LEDright

Returns: 0 if off, 1 if red, 2 if green

Notes:
Left and Right LED is established by looking at the front of the CF2 (directly at the CompactFlash
card).

LEDInit -- Setup the LED drivers (turns both off)

Description: This function is called at startup and sets up the hardware drivers for the on board LEDs. A users
application would not need to call this function. This function also has the default effect of
turning off all of the LEDs.

Prototype: void LEDInit(void);

LEDOrbit -- Orbit the LEDs on each call

Description: LEDOrbit allows you to create a circling effect with the two dual LED's on the CF2. Each LED is
actually two stacked LEDs with a red one on the bottom and a green one on the top. LEDOrbit
when called repeatedly with a delay in between each call makes the LEDs flash in a circle. In
other words each call to LEDOrbit turns off the currently active diode and turns on the next one
in the "circle."

Prototype: void LEDOrbit(bool ccw);

Inputs: ccw is a boolean that is TRUE if the LEDs should orbit in the counterclockwise direction.

LEDSetState -- Set the LED state

Description: Set the state of either LED explicitly.

Prototype: void LEDSetState(ushort lrLED, ushort state);

Inputs: lrLED is either LEDleft or LEDright (enumerated as 0 and 1 respectively)
state is one of these four enumerated values: LEDoff, LEDred, LEDgreen, and LEDbus

Notes:
The LED state can also be determined using a group of enumerated variables: LEDoff, LEDred,
LEDgreen.

LEDToggleRG -- Toggle LED between Red and Green

Description: This function toggles the color of the specified LED from red to green or vice versa. If the LED is
off when LEDToggleRG is called it will turn on with a color of red.

Prototype: void LEDToggleRG(ushort lrLED);

Inputs:
lrLED is either LEDleft or LEDright (enumerated as 0 and 1 respectively) and specifies which
LED to toggle

P E R S I S T O R
I n s t r umen t s I nc.

23 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

LEDToggleRGOff -- Toggle LED between Red, Green, and Off

Description: This function toggles the color of the specified LED from red to green to off in a cyclic manner.
If the LED is off when LEDToggleRGOff is called it will turn on with a color of red.

Prototype: void LEDToggleRGOff(ushort lrLED);

Inputs:
lrLED is either LEDleft or LEDright (enumerated as 0 and 1 respectively) and specifies which
LED to toggle

P E R S I S T O R
I n s t r umen t s I nc.

24 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Periodic Interrupt Timer Functions

PITAddChore -- Add a periodic interrupt chore

Description: This function adds a chore to the list of chores to be executed at the interval specified with
either: PITSet100usPeriod or PITSet51msPeriod.

Prototype: bool PITAddChore(vfptr chore, ushort intReqLevel);

Inputs: chore is a volatile function pointer to the chore to be installed
intReqLevel is the interrupt request level that you wish your chore to be run at. It will never be
higher than the level at which the PIT was initialized.

Returns: Returns TRUE if the chore was successfully added to the list.

Notes: These chores should be kept fairly short. A good rule of thumb is to keep all of the chores to a
combined maximum duration of 100µs. This chore is executed in an interrupt so the standard
interrupt guidelines apply with regards to execution speed. The interrupt request level you pass
to this function is the interrupt request level you wish the chore to be executed at. However, the
chore will never execute at a higher priority than the PIT was initialized at.

PITInit -- Initialize the periodic interrupt timer

Description: This function is generally called automatically by the operating system before your program
runs, though in special cases, you may override the OS and sequence the initialization process
yourself (see Startup). This function lays all the groundwork for the Periodic Interrupt timer but
does not start the timer or install any chores.

Prototype: void PITInit(ushort intReqLevel);

Inputs: intReqLevel is the interrupt request level (0-7) that the PIT will run at. (Default is 3)

PITPeriod -- Return PIT period setting in microseconds, zero if off

Description: Return PIT period setting in microseconds, zero if off

Prototype: ulong PITPeriod(void);

Inputs: Nothing

Returns: PIT period in microseconds or zero if the PIT is off

PITRemoveChore -- Remove a periodic interrupt chore (NULL vfptr for all)

Description: This function removes a chore from the PIT chore list that was perviously added by the
PITAddChore function. Pass NULL (zero) for the chore parameter to remove all PIT chores.

Prototype: bool PITRemoveChore(vfptr chore);

Inputs: chore is a pointer to a function that was installed with the PITAddChore function.

Returns: Returns TRUE if the chore was successfully removed.

P E R S I S T O R
I n s t r umen t s I nc.

25 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

PITSet100usPeriod -- Set periodic interrupt timer period in 100us ticks

Description: This function specifies how often the PIT interrupts in units of 100 µs. Because the register that
holds the period is only 8 bits, this function can only specify delays of 100µs to 25.5ms. When
this function is called it not only sets the period but actually starts the timer and the chores
begin.

Prototype: void PITSet100usPeriod(uchar per100us);

Inputs: per100us is the number of 100µs intervals between PIT interrupts.

PITSet51msPeriod -- Set periodic interrupt timer period in 51ms ticks

Description: This function specifies how often the PIT interrupts in units of 51 ms. This function is provided
because PITSet100usPeriod can only provide delays of up to 25.5 ms. This function expands that
range by allowing you to specify delays of 51ms to 13s. When this function is called, it not only
sets the period but actually starts the timer and the chores begin.

Prototype: void PITSet51msPeriod(uchar per51ms);

Inputs: per51ms is the number of 51ms intervals between PIT interrupts.

P E R S I S T O R
I n s t r umen t s I nc.

26 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

PicoDOS Initialization and Coordination Functions

_PICOHandlerAddress -- Return a PICO handlers actual address

Description: Return a PICO handlers actual address

Prototype: vptr _PICOHandlerAddress(short drvrid);

Inputs: drvrid is the handler id

Returns: Returns the handlers address

_PICOPatchInsert -- Insert a new handler in the PICO table

Description: Insert a new handler in the PICO table

Prototype: vptr _PICOPatchInsert(short drvrid, vptr newf);

Inputs: drvrid is the handler id
newf is the new handler’s address

Returns: Returns the address of the handler being replaced

PICOMemAllocRegister -- Give PicoDOS access to application memory

Description: Give PicoDOS access to application memory to enable advanced features

Prototype: void PICOMemAllocRegister(Callocf *callocf, Freef *freef);

Inputs: callocf is the pointer to the calloc function
freef is the pointer to the free function

Returns: Nothing

P E R S I S T O R
I n s t r umen t s I nc.

27 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

PicoZOOM Functions

PZCacheFlush -- Flush cached data to the storage media

Description: Flush cached data to the storage media

Prototype: bool PZCacheFlush(short logdrv);

Inputs: logdrv is the logical drive number ("A:" = 0, "B:" = 1, etc.)

Returns: Returns TRUE if successful.

PZCacheSetup -- Setup PicoZOOM cache and optimizations

Description: Setup PicoZOOM cache and optimizations

Prototype: bool PZCacheSetup(short logdrv, Callocf *callocf, Freef *freef);

Inputs: logdrv is the logical drive number ("A:" = 0, "B:" = 1, etc.)
callocf is a pointer to a user supplied memory allocation funcion with the same behavior as the
standard C library calloc funtions, and will in fact generally be a pointer to your applications
calloc.
freef isa pointer to a user supplied memory allocation funcion with the same behavior as the
standard C library free funtions, and will in fact generally be a pointer to your applications free.

Returns: Returns TRUE if successful.

Notes: Because PicoZOOM requires more RAM than PicoDOS has at its disposal, you must explicitly
enable PicoZOOM in your application to let PicoZOOM borrow RAM from your application's heap.
Each device that you setup to use PicoZOOM will require about 10KB of RAM.

PZCacheRelease -- Conclude (flush) and free PicoZOOM cache memory

Description: Conclude (flush) and free PicoZOOM cache memory

Prototype: bool PZCacheRelease(short logdrv);

Inputs: logdrv is the logical drive number ("A:" = 0, "B:" = 1, etc.)

Returns: Returns TRUE if successful.

P E R S I S T O R
I n s t r umen t s I nc.

28 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Pin I/O Drivers, Functions, and Macros

CF2 I/O pins

SIGNAL

PIN

DESCRIPTION

DIRECTION

FUNCTION

PULL UP

RESET 1
*

RESET 2
*

DS 1 Data Strobe/GPIO Out GPIO/BUS OB OB
PCS2 15 SPI Chip Select 2 I/O GPIO/QSPI I? O+
SCK 16 SPI Serial Clock I/O GPIO/QSPI I? O+
PCS3 17 SPI Chip Select 3 I/O GPIO/QSPI I? O+
MOSI 18 SPI Master Data Out I/O GPIO/QSPI I? O+
PCS1 19 SPI Chip Select 1 I/O GPIO/QSPI I? O+
MISO 20 SPI Master Data In I/O GPIO/QSPI 1M I+ I+
PCS0 21 SPI Chip Select 0 I/O GPIO/QSPI I? O+
TPU1 22 Time Processor Pin I/O GPIO/TMR I? I?
TPU2 23 Time Processor Pin I/O GPIO/TMR I? I?
TPU3 24 Time Processor Pin I/O GPIO/TMR I? I?
TPU4 25 Time Processor Pin I/O GPIO/TMR I? I?
TPU5 26 Time Processor Pin I/O GPIO/TMR I? I?
TPU6 27 Time Processor Pin I/O GPIO/TMR I? I?
TPU7 28 Time Processor Pin I/O GPIO/TMR I? I?
TPU8 29 Time Processor Pin I/O GPIO/TMR I? I?
TPU9 30 Time Processor Pin I/O GPIO/TMR I? I?
TPU10 31 Time Processor Pin I/O GPIO/TMR I? I?
TPU11 32 Time Processor Pin I/O GPIO/TMR I? I?
TPU12 33 Time Processor Pin I/O GPIO/TMR I? I?
TPU13 34 Time Processor Pin I/O GPIO/TMR I? I?
TPU14 35 Time Processor Pin I/O GPIO/TMR I? I?
T2CLK 36 Timer Load / Clock In GPIO/TMR 1M I+ I+
TPU15 37 Time Processor Pin I/O GPIO/TMR I? I?
IRQ5 39 Interrupt Request 5 I/O GPIO/IRQ 10K IB+ I+
IRQ7 40 Interrupt Request 7 I/O GPIO/IRQ 10K IB+ I+
IRQ2 41 Interrupt Request 2 I/O GPIO/IRQ 10K IB+ I+
MODCLK 42 Clk Source Sel / GPIO I/O GPIO/CLK 10K IB+ I+
IRQ4RXD 45 IRQ / CMOS RxD Sense In GPIO/UART IB? I+
TXD 46 CMOS Serial TxD Out GPIO/UART I? OB
TXX 48 CMOS TXX / RXX Output Out GPIO/UART 1M I+ O+
IRQ3RXX 50 IRQ / CMOS RXX Sense In GPIO/UART IB? I+

* The state of these I/O pins shown in the column ‘RESET 1’ refers to the condition of the pins before PicoDOS
takes control (between 500mS to 1 second). The conditions shown in ‘RESET 2’ are the conditions which
PicoDOS sets.

I = input
O = output
OB = three state output that includes circuitry to pull up output before high impedance is established

to ensure rapid rise time
IB = type OB that can operate in open drain mode.

See the CF2 Getting Started Guide for more detailed I/O pin descriptions.

P E R S I S T O R
I n s t r umen t s I nc.

29 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

PIN macros vs. PIO functions

PIN functions Inline assembly macros
faster
require compile time literal
arguments
do not verify pin conditions

PIO functions Standard C functions
slower
can pass variables
do verify pin conditions

PinBus Make pin perform function PIOBusFunct Make pin perform function

PinTestIsItBus Is pin performing its function?

PIOTestAssertClear
PIOTestAssertSet

Return true if pin is a low output
Return true if pin is a high output

PinIO Make pin perform I/O function

PinRead Configure as input and read PIORead Configure as input and read

PinSet Configure as output and set high PIOSet Configure as output and set high

PinWrite Configure as output low or high PIOWrite Configure as output as low or high

PinClear Configure as output and set low PIOClear Configure as output and set low

PinMirror Read and output level read PIOMirror
PIOMirrorList

Read and output level read
Read a list of pins and output level read

PinToggle Configure as output and toggle PIOToggle Configure as output and toggle

PinBus -- Make an I/O pin perform its bus function (varies)

Description: Configures one of the I/O ports to act as its bus function instead of as an I/O pin.

Prototype: void PinBus(short pin);

Inputs: pin is the pin to act on.

Notes: 1) All arguments to the macro functions must be compile-time literals
2) Pin must be in Pin I/O mode or the operation may fail.

PinClear -- Configure I/O pin as output and set low

Description: Directly clears one of the I/O ports.

Prototype: void PinClear(PinID pin);

Inputs: pin is the pin to clear

Notes:
1) All arguments to the macro functions must be compile-time literals
2) Pin must be in Pin I/O mode or the operation may fail.

P E R S I S T O R
I n s t r umen t s I nc.

30 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

PinIO -- Make an I/O pin perform its digital I/O function

Description: Configure one of the I/O ports to act as an I/O pin.

Prototype: void PinIO(short pin);

Inputs: pin is the pin number to act on

Notes: 1) All arguments to the macro functions must be compile-time literals
2) Pin must be in Pin I/O mode or the operation may fail.

PinMirror -- Read an I/O pin, then configure as an output at the level read

Description: Configures an individual bit of an I/O port as an input and reads its current state, then
it reconfigures the line to an output at the level previously read. This is particularly
useful for eliminating floating inputs which can cause the system to waste power.

Prototype: void PinMirror(short pin);

Inputs: pin is the pin number to act on

Notes:
1) All arguments to the macro functions must be compile-time literals
2) Pin must be in Pin I/O mode or the operation may fail.

PinRead -- Configure I/O pin as input and read level

Description: Reads the bit setting of one of the I/O ports.

Prototype: short PinRead(short pin);

Inputs: Pin is the pin number you wish to read

Returns: The current level if the port pin has previously been defined as an input

Notes: 1) All arguments to the macro functions must be compile-time literals
2) Pin must be in Pin I/O mode or the operation may fail.

PinSet -- Configure I/O pin as output and set high

Description: Directly sets one of the I/O ports.

Prototype: void PinSet(PinID pin);

Inputs: pin is the pin to set.

Notes: 1) All arguments to the macro functions must be compile-time literals
2) Pin must be in Pin I/O mode or the operation may fail.

P E R S I S T O R
I n s t r umen t s I nc.

31 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

PinTestIsItBus -- Is a pin performing its bus function

Description: This function allows you program to ascertain whether a pin is currently performing its bus
function. This function is only relevant to pins which have bus functions.

Prototype: short PinTestIsItBus (short pin);

Inputs: pin is the pin number to act upon.

Returns: Returns zero if the pin is configured for its I/O function and nonzero for its bus function

Notes: All arguments to the macro functions must be compile-time literals

PinToggle -- Configure I/O pin as output and toggle current level

Description: Directly toggle one of the I/O ports.

Prototype: void PinToggle(short pin);

Inputs: pin is the pin number to act upon

Notes: 1) All arguments to the macro functions must be compile-time literals
2) Pin must be in Pin I/O mode or the operation may fail.

PinWrite -- Configure I/O pin as output and write level

Description: Sets one of the I/O ports with the specified value.

Prototype: void PinWrite(short pin, short value);

Inputs: pin is the pin number to act on
value is the value (0 or 1) that you wish to write to the pin.

Notes: 1) All arguments to the macro functions must be compile-time literals
2) Pin must be in Pin I/O mode or the operation may fail.

PIOBusFunct -- Make an I/O pin perform its alternate function (varies)

Description: This function first configures an I/O line to perform its alternate function which will vary with
each pin, and only applies interrupt request (IRQn) and QSM (port Q) lines. The pin argument
can be specified as numerical value between 1 and 50 corresponding to the CF2 pin out on
connector

Prototype: short PIOBusFunct(short pin);

Inputs: pin is the pin number to act on

Returns: Returns the current level (after mirroring) or -1 if there's an error

P E R S I S T O R
I n s t r umen t s I nc.

32 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

PIOClear -- Configure I/O pin as output and set low

Description: This function configures an individual bit of an I/O port as an output driving low. The pin
argument can be specified as numerical value between 1 and 50 corresponding to the CF2 pin
out on connector C.

Prototype: short PIOClear(short pin);

Inputs: pin is the pin number to act on

Returns: Returns the current level (after clearing) or -1 if there's an error

PIOMirror -- Read an I/O pin, then configure as an output at the level read

Description: This function first configures an individual bit of an I/O port as an input and reads its current
state, then it reconfigures the line to an output at the level previously read. This is particularly
useful for eliminating floating inputs which can cause the system to waste power. The pin
argument can be specified as numerical value between 1 and 50 corresponding to the CF2 pin
out on connector C.

Prototype: short PIOMirror(short pin);

Inputs: pin is the pin number to act on

Returns: the current level (after mirroring) or -1 if there's an error

PIOMirrorList -- Read I/O pins, then configure as an output at the level read

Description: This function acts on a zero terminated list of pin numbers and invokes PIOMirror() to convert
possibly floating inputs to outputs.

Prototype: void PIOMirrorList(uchar *pinlist);

Inputs: pinlist is a list of uchars which contain the pin numbers to mirror.

PIORead -- Configure I/O pin as input and read level

Description: This function sets up an I/O pin as an input port and returns the current level. The pin argument
can be specified as numerical value between 1 and 50 corresponding to the CF2 pin out on
connector C.

Prototype: short PIORead(short pin);

Inputs: pin is the pin number to act on

Returns: the current level or -1 if there's an error

Notes: Notes-???

P E R S I S T O R
I n s t r umen t s I nc.

33 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

PIOSet -- Configure I/O pin as output and set high

Description: Configures an individual bit of an I/O port as an output driving high. The pin argument can be
specified as numerical value between 1 and 50 corresponding to the CF2 pin out on connector C.

Prototype: short PIOSet(short pin);

Inputs: pin is the pin number to act on

Returns: Returns the current level (after setting) or -1 if there's an error

PIOTestAssertClear -- Return true if I/O pin is currently an output asserting low

Description: This function tests to see if the specified pin is configured as an output and is asserted low.

Prototype: short PIOTestAssertClear (short pin);

Inputs: pin is the pin number to test.

Returns: Returns nonzero if the pin is set low, and zero if the pin is set high or is not an I/O output.

PIOTestAssertSet -- Return true if I/O pin is currently an output asserting high

Description: Return TRUE if I/O pin is currently an output asserting high

Prototype: short PIOTestAssertSet (short pin);

Inputs: pin is the pin number to test.

Returns: Returns nonzero if the pin is set high, and zero if the pin is set low or is not an I/O output.

PIOToggle -- Configure I/O pin as output and toggle current level

Description: Configures an individual bit of an I/O port as an output driving at the opposite of the current
level. The pin argument can be specified as numerical value between 1 and 50 corresponding to
the CF2 pin out on connector C.

Prototype: short PIOToggle(short pin);

Inputs: pin is the pin number to act on

Returns: Returns the current level (after toggling) or -1 if there's an error

PIOWrite -- Configure I/O pin as output and write level

Description: Configures an individual bit of an I/O port as an output driving at the specified level. The pin
argument can be specified as numerical value between 1 and 50 corresponding to the CF2 pin
out on connector C.

Prototype: short PIOWrite(short pin, short value);

Inputs: pin is the pin number to act on
value is the value (0 or 1) that you wish to write to the pin.

Returns: Returns the current level (after setting) or -1 if there's an error

P E R S I S T O R
I n s t r umen t s I nc.

34 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Ping-Pong Buffer Functions

Summary of Ping-Pong Buffer Functions

PPBCheckRdAvail Return the number of bytes waiting to be read

PPBCheckWrFree Return the free space left before a wrap

PPBClose Close a ping-pong buffer (does not automatically flush)

PPBFlush Flush a ping-pong buffer and force a ping-pong flip

PPBGetMemBuf Return the read buffer and optionally zero the size

PPBOpen Open and initialize a ping-pong buffer

PPBPutByte Write 8-bit byte into the ping-pong buffer

PPBPutWord Write 16-bit word into the ping-pong buffer

PPBRead Read data from the ping-pong buffer

PPBWrite Write data into the ping-pong buffer

PPBCheckRdAvail -- Return the number of bytes waiting to be read

Description: Return the number of bytes waiting to be read

Prototype: long PPBCheckRdAvail(void *ppb);

Inputs: ppb is the generic pointer returned by PPBOpen and used internally to manage the buffers.

Returns: Returns the count of available bytes in the read buffer

PPBCheckWrFree -- Return the free space left before a wrap

Description: Return the free space left before a wrap

Prototype: long PPBCheckWrFree(void *ppb);

Inputs: ppb is the generic pointer returned by PPBOpen and used internally to manage the buffers.

Returns: Returns the number of bytes that can be written before the buffer ping-pongs

PPBClose -- Close a ping-pong buffer (does not automatically flush)

Description: Close a ping-pong buffer (does not automatically flush)

Prototype: void PPBClose(void *ppb);

Inputs: ppb is the generic pointer returned by PPBOpen and used internally to manage the buffers.

Returns: Returns nothing

P E R S I S T O R
I n s t r umen t s I nc.

35 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

PPBFlush -- Flush a ping-pong buffer and force a ping-pong flip

Description: Flush a ping-pong buffer and force a ping-pong flip

Prototype: short PPBFlush(void *ppb);

Inputs: ppb is the generic pointer returned by PPBOpen and used internally to manage the buffers.

Returns: Returns zero for success or a non-zero error code

PPBGetMemBuf -- Return the read buffer and optionally zero the size

Description: Return the read buffer and optionally zero the size

Prototype: void *PPBGetMemBuf(void *ppb, long *size, bool flush);

Inputs: ppb is the generic pointer returned by PPBOpen and used internally to manage the buffers.
size is a pointer to a long variable to accept the count of available bytes
flush if TRUE resets the read buffer to indicate that the data has been read

Returns: Returns a direct pointer to the read data buffer

PPBOpen -- Open and initialize a ping-pong buffer

Description: Open and initialize a ping-pong buffer

Prototype: void *PPBOpen(long totSize, void *buf, PPBRdf rdf, PPBWrf wrf, vfptr ppnotify);

Inputs: totSize is the combined size in bytes of both halves of the user supplied ping-pong buffer
buf is user supplied ping-pong buffer
rdf is an optional user supplied function that reads data from the ping-pong buffer (pass zero for
default memory functions)
wrf is an optional user supplied function that writes data into the ping-pong buffer (pass zero
for default memory functions)
ppnotify is an optional user supplied function to call when the ping-pong buffer wraps.

Returns: Returns a generic pointer used internally by PPB to manage the buffers or zero on failure

Notes: typedef long PPBWrf(void *buf, void *wrp, ulong wrofs, ulong n);
typedef long PPBRdf(void *buf, void *rdp, ulong rdofs, ulong n);

PPBPutByte -- Write 8-bit byte into the ping-pong buffer

Description: Write 8-bit byte into the ping-pong buffer

Prototype: short PPBPutByte(void *ppb, uchar byte);

Inputs: ppb is the generic pointer returned by PPBOpen and used internally to manage the buffers.
byte is 8 bit value to write

Returns: Returns zero for success or a non-zero error code

P E R S I S T O R
I n s t r umen t s I nc.

36 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

PPBPutWord -- Write 16-bit word into the ping-pong buffer

Description: Write 16-bit word into the ping-pong buffer

Prototype: short PPBPutWord();

Inputs: ppb is the generic pointer returned by PPBOpen and used internally to manage the buffers.
word is the 16 bit value to write

Returns: Returns zero for success or a non-zero error code

PPBRead -- Read data from the ping-pong buffer

Description: Read data from the ping-pong buffer

Prototype: long PPBRead(void *ppb, void *buf, long nbyte);

Inputs: ppb is the generic pointer returned by PPBOpen and used internally to manage the buffers.
buf is a pointer to a block of data to read from the FIFO
nbyte is the number of bytes to write

Returns: Returns nbyte for complete success or the number of bytes read

PPBWrite -- Write data into the ping-pong buffer

Description: Write data into the ping-pong buffer

Prototype: long PPBWrite(void *ppb, void *buf, long nbyte);

Inputs: ppb is the generic pointer returned by PPBOpen and used internally to manage the buffers.
buf is a pointer to a block of data to write data into the FIFO
nbyte is the number of bytes to write

Returns: Returns nbyte for complete success or the number of bytes written

P E R S I S T O R
I n s t r umen t s I nc.

37 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Power Management Drivers and Functions

Summary of Power Management Drivers and Functions

LPStop Execute LPSTOP with options previously setup.

LPStopCSE Execute LPSTOP and set the passed bits to control powering down other modules.

QSMRun Start the Queued Serial Module.

QSMStop Stop the Queued Serial Module.

PWRLPStopSetup Setup LPSTOP CLKOUT driven.

PWRSuspendSecs Delay in suspend mode for a number of seconds.

PWRSuspendUntil Delay in suspend mode until a future time.

PWRPreChgAddChore Add a power pre-change chore.

PWRPreChgRemoveChore Remove a power pre-change chore.

PWRPostChgAddChore Add a power post-change chore.

PWRPostChgRemoveChore Remove a power post-change chore.

LPStop – Executes LPSTOP with options previously setup

Description: Executes LPSTOP with options previously setup

Prototype: void LPStop(void);

Inputs: None

Returns: Nothing

LPStopCSE – Execute LPSTOP and set the passed bits to control powering down

Description: Execute an LPSTOP and set the passed bits to control powering down other modules.

Prototype: void LPStopCSE(uchar csebits);

Inputs: LPStopCSE modifies SYNCR with bits specifying:

bit 1 (0x02) = 1 is VCO running and driving SIMCLK
bit 0 (0x01) = 1 is external clock driven as determined by STSIM

You will use one of the following:

Lowest Power - FullStop
Fast IRQ Response – FastStop
Submodules Running – CPUStop

Returns: Nothing

P E R S I S T O R
I n s t r umen t s I nc.

38 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

QSMRun – Start the Queued Serial Module

Description: Start the Queued Serial Module

Prototype: void QSMRun(void);

Inputs: None

Returns: Nothing

Notes: macro inserts in-line code for fast operation

QSMStop – Stop the Queued Serial Module

Description: Stop the Queued Serial Module

Prototype: void QSMStop(void);

Inputs: None

Returns: Nothing

Notes: macro inserts in-line code for fast operation

PWRLPStopSetup – Setup LPSTOP CLKOUT driven

Description: Setup LPSTOP CLKOUT driven

Prototype: void PWRLPStopSetup(bool stcpu, bool stsim, bool stext);

Inputs: stcpu TRUE stops just cpu
stsim TRUE clock stays VCO
stext TRUE CLKOUT driven

Returns: Nothing

PWRSuspendSecs – Delay in suspend mode for a number of seconds

Description: Delay in suspend mode for a number of seconds

Prototype:
WhatWokeSuspend PWRSuspendSecs(ulong delaysecs, bool resume, short
WhatWakesSuspend);

Inputs: delaysecs is the delay in seconds as a long value
resume is a Boolean value where TRUE means continue execution at the line following the call
and FALSE will force a RESET
WhatWakesSuspend is a flag to indicate what is allowed to wake up early (e.g. the wake pin)

Returns: An unermerated value (WhatWakesSuspend) indicating what really woke us.

P E R S I S T O R
I n s t r umen t s I nc.

39 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

PWRSuspendUntil – Delay in suspend mode until a future time

Description: Delay in suspend mode until a future time

Prototype:
WhatWokeSuspend PWRSuspendUntil(ulong waketime, bool resume, short
WhatWakesSuspend);

Inputs: waketime is the future wake time in seconds as a long value (based on RTC)
resume is a Boolean value where TRUE means continue execution at the line following the call
and FALSE will force a RESET
WhatWakesSuspend is a flag to indicate what is allowed to wake up early (e.g. the wake pin)

Returns: An unermerated value (WhatWakesSuspend) indicating what really woke us.

PWRPreChgAddChore – Add a power pre-change chore

Description: Add a power pre-change chore

Prototype: bool PWRPreChgAddChore(vfptr chore, ushort priority);

Inputs: chore is a volatile function pointer to the chore to be executed at interrupt time
priority is the CPU priority for the chore

Returns: TRUE if success FALSE otherwise

PWRPreChgRemoveChore – Remove a power pre-change chore

Description: Remove a power pre-change chore

Prototype: bool PWRPreChgRemoveChore(vfptr chore);

Inputs: chore is a pointer to the chore

Returns: TRUE if success and FALSE otherwise.

PWRPostChgAddChore – Add a power post-change chore

Description: Add a power post-change chore

Prototype: bool PWRPostChgAddChore(vfptr chore, ushort priority);

Inputs: chore is a volatile function pointer to the chore to be executed at interrupt time
priority is the CPU priority for the chore

Returns: TRUE if success and FALSE otherwise.

PWRPostChgRemoveChore – Remove a power post-change chore

Description: Remove a power post-change chore

Prototype: bool PWRPostChgRemoveChore(vfptr chore);

Inputs: chore is a pointer to the chore

Returns: TRUE if success and FALSE otherwise.

P E R S I S T O R
I n s t r umen t s I nc.

40 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Query/Reply Functions

The query/reply functions provide a variety of useful functions for interacting with an operator using console
I/O.

Summary of Query / Reply Functions

QRchar Query/Reply for character using: %c

QRconfirm Query/Reply for Y/N confirmation

QRdate Query/Reply for date

QRdatetime Query/Reply for date and time

QRdouble Query/Reply for double using: %lf %le %lE %lg %lG

QRfloat Query/Reply for float using: %f %e %E %g %G

QRlong Query/Reply for long using: %li %ld %lu %lo

QRshort Query/Reply for short using: %i %hi %d %hd %u %hu %o %ho

QRstring Query/Reply for string using: %s

QRtime Query/Reply for time

QRulong Query/Reply for ulong using: %li %ld %lu %lo

QRushort Query/Reply for ushort using: %i %hi %d %hd %u %hu %o %ho

QRchar -- Query/Reply for character using: %c

Description: Query/Reply for character using: %c

Prototype: bool QRchar(char *prompt, char *fmt, bool crok, char *reply, char *instr, bool uc);

Inputs: prompt is a zero terminated C string to display as a prompt for the user.
fmt is a standard C libary printf/scanf format string
crok is set TRUE to accept the default reply with just a carriage-return (enter key)
reply is a pointer to a character variable to hold the reply
instr if non-zero must contain a set of characters that the reply must match to be valid
uc is set TRUE to force all replies to upper case.

Returns: Returns TRUE for all but query cancelled (CTRL-C typed).

QRconfirm -- Query/Reply for Y/N confirmation

Description: Query/Reply for Y/N confirmation

Prototype: bool QRconfirm(char *prompt, bool defyes, bool crok);

Inputs: prompt is a zero terminated C string to display as a prompt for the user.
defyes is set TRUE to make 'Y' the default reply.
crok is set TRUE to accept the default reply with just a carriage-return (enter key)

Returns: Returns TRUE Yes replies.

P E R S I S T O R
I n s t r umen t s I nc.

41 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

QRdate -- Query/Reply for date

Description: Query/Reply for date

Prototype: bool QRdate(char *prompt, DateFieldOrder dfo, bool crok, struct tm *tm);

Inputs: prompt is a zero terminated C string to display as a prompt for the user.
crok is set TRUE to accept the default reply with just a carriage-return (enter key)
tm is a standard C library tm structure pointer from <time.h> with fields tm_year, tm_mon, and
tm_mday filled in from the scan.

Returns: Returns TRUE for all but query cancelled (CTRL-C typed).

Notes: Replies are accepted with:

YEAR<delim>MONTH<delim>DAY (specifying enum YYMMDD)
MONTH<delim>DAY<delim>YEAR (specifying enum MMYYDD)
DAY<delim>MONTH<delim>YEAR (specifying enum DDMMYY)

<delim> may be any single comma, space, dash, period, or slash.
YEAR may a full 4 digits or 2 digits assumed between 1970 and 2069
MONTH may be 1-12, full text (January, February, ..., December) or three character
abbreviations.

typedef enum { YYMMDD // ISO
 , MDDYY // US
 , DDMMYY // European
 } DateFieldOrder;

QRdatetime -- Query/Reply for date and time

Description: Query/Reply for date and time

Prototype: bool QRdatetime(char *prompt, DateFieldOrder dfo, bool crok, struct tm *tm);

Inputs: prompt is a zero terminated C string to display as a prompt for the user.
crok is set TRUE to accept the default reply with just a carriage-return (enter key)
tm is a standard C library tm structure pointer from <time.h> with fields tm_year, tm_mon,
tm_mday, m_hour, tm_min, and tm_secs filled in from the scan.

Returns: Returns TRUE for all but query cancelled (CTRL-C typed).

Notes: Replies are accepted with:

YEAR<delim>MONTH<delim>DAY (specifying enum YYMMDD)
MONTH<delim>DAY<delim>YEAR (specifying enum MMYYDD)
DAY<delim>MONTH<delim>YEAR (specifying enum DDMMYY)

<delim> may be any single comma, space, dash, period, or slash.
YEAR may a full 4 digits or 2 digits assumed between 1970 and 2069
MONTH may be 1-12, full text (January, February, ..., December) or three character
abbreviations.

typedef enum { YYMMDD // ISO
 , MDDYY // US
 , DDMMYY // European
 } DateFieldOrder;

P E R S I S T O R
I n s t r umen t s I nc.

42 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

QRdouble -- Query/Reply for double using: %lf %le %lE %lg %lG

Description: Query/Reply for double using: %lf %le %lE %lg %lG

Prototype:
bool QRdouble(char *prompt, char *fmt, bool crok, double *value, double min, double
max);

Inputs: prompt is a zero terminated C string to display as a prompt for the user.
fmt is a standard C libary printf/scanf format string
crok is set TRUE to accept the default reply with just a carriage-return (enter key)
value is a pointer to a double variable that will hold the reply
min if not equal to max, min is the minimum valid value to accept for a reply
max if not equal to min, max is the maximum valid value to accept for a reply

Returns: Returns TRUE for all but query cancelled (CTRL-C typed).

QRfloat -- Query/Reply for float using: %f %e %E %g %G

Description: Query/Reply for float using: %f %e %E %g %G

Prototype: bool QRfloat(char *prompt, char *fmt, bool crok, float *value, float min, float max);

Inputs: prompt is a zero terminated C string to display as a prompt for the user.
fmt is a standard C libary printf/scanf format string
crok is set true to accept the default reply with just a carriage-return (enter key)
value is a pointer to a float variable that will hold the reply
min if not equal to max, min is the minimum valid value to accept for a reply
max if not equal to min, max is the maximum valid value to accept for a reply

Returns: Returns TRUE for all but query cancelled (CTRL-C typed).

QRlong -- Query/Reply for long using: %li %ld %lu %lo

Description: Query/Reply for long using: %li %ld %lu %lo

Prototype: bool QRlong(char *prompt, char *fmt, bool crok, long *value, long min, long max);

Inputs: prompt is a zero terminated C string to display as a prompt for the user.
fmt is a standard C libary printf/scanf format string
crok is set true to accept the default reply with just a carriage-return (enter key)
value is a pointer to a long variable that will hold the reply
min and max same as described above

Returns: Returns TRUE for all but query cancelled (CTRL-C typed).

QRshort -- Query/Reply for short using: %i %hi %d %hd %u %hu %o %ho

Description: Query/Reply for short using: %i %hi %d %hd %u %hu %o %ho

Prototype: bool QRshort(char *prompt, char *fmt, bool crok, short *value, short min, short max);

Inputs: prompt is a zero terminated C string to display as a prompt for the user.
fmt is a standard C libary printf/scanf format string
crok is set true to accept the default reply with just a carriage-return (enter key)
value is a pointer to a short variable that will hold the reply
min and max same as described above

Returns: Returns TRUE for all but query cancelled (CTRL-C typed).

P E R S I S T O R
I n s t r umen t s I nc.

43 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

QRstring -- Query/Reply for string using: %s

Description: Query/Reply for string using: %s,

Prototype: bool QRstring(char *prompt, char *fmt, bool crok, char *strbuf, short len);

Inputs: prompt is a zero terminated C string to display as a prompt for the user.
fmt is a standard C libary printf/scanf format string
crok is set TRUE to accept the default reply with just a carriage-return (enter key)
strbuf is a pointer to a character buffer to hold the reply
len is the maximum number of character to place in the reply buffer

Returns: Returns TRUE for all but query cancelled (CTRL-C typed).

QRtime -- Query/Reply for time

Description: Query/Reply for time

Prototype: bool QRtime(char *prompt, bool crok, struct tm *tm);

Inputs: prompt is a zero terminated C string to display as a prompt for the user.
crok is set TRUE to accept the default reply with just a carriage-return (enter key)
tm is a standard C library tm structure pointer from <time.h> with fields tm_hour, tm_min, and
tm_secs filled in from the scan.

Returns: Returns TRUE for all but query cancelled (CTRL-C typed).

Notes: Replies are accepted in the form: HOURS<delim>MINUTES<delim>SECONDS
<delim> may be any single comma, space, dash, period, or slash.

QRulong -- Query/Reply for ulong using: %li %ld %lu %lo

Description: Query/Reply for ulong using: %li %ld %lu %lo

Prototype:
bool QRulong(char *prompt, char *fmt, bool crok, ulong *value, ulong min, ulong
max);

Inputs: prompt is a zero terminated C string to display as a prompt for the user.
fmt is a standard C libary printf/scanf format string
crok is set TRUE to accept the default reply with just a carriage-return (enter key)
value is a pointer to a ulong variable that will hold the reply
min if not equal to max, min is the minimum valid value to accept for a reply
max if not equal to min, max is the maximum valid value to accept for a reply

Returns: Returns TRUE for all but query cancelled (CTRL-C typed).

QRushort -- Query/Reply for ushort using: %i %hi %d %hd %u %hu %o %ho

Description: Query/Reply for ushort using: %i %hi %d %hd %u %hu %o %ho

Prototype:
bool QRushort(char *prompt, char *fmt, bool crok, ushort *value, ushort min, ushort
max);

Inputs: prompt and fmt and crok same as described above
value is a pointer to a ushort variable that will hold the reply
min and max same as described above

Returns: Returns TRUE for all but query cancelled (CTRL-C typed).

P E R S I S T O R
I n s t r umen t s I nc.

44 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Queued PicoBUS (QSPI) Drivers and Functions

Summary of QSPI Drivers and Functions

QPBClearBusy Clear busy flag

QPBClearInterrupt Clear the QPB interrupt flag

QPBFreeSlot Remove a PicoBUS device slot

QPBInitSlot Initialize a PicoBUS device slot

QPBLockSlot Lock and return true if slot available for exclusive use

QPBRepeatAsync Execute a pre-set-up asynchronous transfer

QPBSetup Set up the QPB for future asynchronous transfers

QPBTestBusy Set up the QPB for future asynchronous transfers

QPBTestLocked See if the QPB is locked

QPBTransact Conduct a PicoBUS session

QPBUnlockSlot Unlock PicoBus for unrestricted use

QPBClearBusy -- Clear busy flag

Description: Clear busy flag

Prototype: void QPBClearBusy (void);

Inputs: None

Returns: Nothing

QPBClearInterrupt -- Clear the QPB interrupt flag

Description: Clear the QPB interrupt flag

Prototype: void QPBClearInterrupt (void);

Inputs: None

Returns: Nothing

Notes: When operating asynchronously, the function specified by the asynchf argument to either
QPBSetup or QPBTransact, will be called upon completion of the transaction. This function must
be called by the handler function so that the interrupt flag that forced the execution of the
completion routine is cleared. If the flag is not cleared, then the completion routine will be
executed for ever.

P E R S I S T O R
I n s t r umen t s I nc.

45 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

QPBFreeSlot -- Remove a PicoBUS device slot

Description: Remove a PicoBUS device slot.

Prototype: void QPBFreeSlot(QPBDev *qbpd);

Inputs: None

Returns: Nothing

Notes: QPBFreeSlot removes a device installed previously by QPBInitSlot. It also frees all memory
allocated in relation to the device's QPBDev structure.

QPBInitSlot -- Initialize a PicoBUS device slot

Description: Initialize a PicoBUS device slot.

Prototype: QPB *QPBInitSlot(QPBDev *qbpd);

Inputs: qbpd is a QPBDev structure filled in by the user that will be assigned a slot for use in the QPB.

Returns: Returns a pointer to a QPB structure that will be used when transacting with the device.

Notes: This function takes device information that you provide in the QPBDev structure and initializes
one of the QPB's 14 slots for use with that specified device. It is important to bear in mind
however that using all 14 slots or arbitrarily picking slot numbers requires external multiplexing
hardware.

QPBLockSlot -- Lock and return true if slot available for exclusive use

Description: Lock and return TRUE if slot available for exclusive use.

Prototype: bool QPBLockSlot(QPB *qpb);

Inputs: qpb is the QPB structure that corresponds to the slot of the desired device. The device must
either be unlocked or the lock must belong to the QPB struct passed here.

Returns: Returns TRUE if lock was successful FALSE otherwise

Notes: This function takes device information that you provide in the QPBDev structure and initializes
one of the QPB's 14 slots for use with that specified device. It is important to bear in mind
however that using all 14 slots or arbitrarily picking slot numbers requires external multiplexing
hardware.

QPBRepeatAsync -- Execute a pre-set-up asynchronous transfer

Description: Execute a pre-set-up asynchronous transfer

Prototype: void QPBRepeatAsync (void);

Notes: This function executes a transaction on the PicoBus. The parameters of the transfer must have
been first setup with QPBSetup or the call will fail and because it is an inline assembly macro
with no return values or parameters, you will have little or no non-catastrophic indication of
failure. The advantage of using QPBSetup with QPBRepeatAsync is that it allows the developer to
reach the highest data rates on the QPB. The other calls have much overhead but also provide
more functionality. Furthermore the slot you wish to use QPBRepeatAsync with must be locked
first with QPBLockSlot.

P E R S I S T O R
I n s t r umen t s I nc.

46 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

QPBSetup -- Set up the QPB for future asynchronous transfers

Description: This function sets up all of the internal registers of the PicoBus and prepares for an
asynchronous transaction. QPBTransact calls this function every time it is called, but in a
synchronous mode.

Prototype: bool QPBSetup(QPB *qpb, vfptr asynchf, ushort count, ushort *spidata);

Inputs: qpb is the QPB structure that corresponds to the slot of the desired device. The device must
either be unlocked or the lock must belong to the QPB struct passed here.
asynchf is a volatile function pointer to the handler to be called when an asynchronous read
completes.
count is the number of 16 bit words that will be passed in the variable arguments. The
maximum number of of words to be passed is 16, making count's maximum 16 also.
spidata is a pointer to the data for the transaction.

Returns: Returns TRUE if the requested setup could be performed.

QPBTestBusy -- Set up the QPB for future asynchronous transfers

Description: This function allows you to test whether or not a transaction (obviously an asynchronous one) is
currently occurring on the QPB.

Prototype: QPB *QPBTestBusy (void);

Returns: Returns a pointer to the QPB structure that is currently transacting or NULL if the bus is free.

QPBTestLocked -- See if the QPB is locked

Description: This function allows you to test whether or not the QPB is currently locked.

Prototype: QPB *QPBTestLocked (void);

Returns: Returns a pointer to the QPB structure that is currently locking or NULL if the bus is free.

QPBTransact -- Conduct a PicoBUS session

Description: This function executes a transaction on the QPB.

Prototype: short *QPBTransact(QPB *qpb, vfptr asynchf, ushort count, ushort *spidata);

Inputs: qpb is the QPB structure that corresponds to the slot of the desired device. The device must
either be unlocked or the lock must belong to the QPB struct passed here.
asynchf is a volatile function pointer to the handler to be called when an asynchronous read
completes. If it is 0 then the call will be synchronous.
count is the number of 16 bit words that will be passed in the variable arguments. The
maximum number of of words to be passed is 16, making count's maximum 16 also.
spidata is a pointer to the data for the transaction.

Returns: ??

Notes: This function takes data as an array of up to 16 words (which are 16 bits wide in the 332 but
each word will be truncated to your device's word size before transacting. In other words if you
want to send 8 words to a device with an 8 bit word length, you would put 8 shorts with padded
MSBs into spidata.) The QPB structure returned by QPBInitSlot designates which device is to
receive the transaction and the count is the number of 16 bit words (up to 16) to read off the
stack to be transmitted. You may also make this call asynchronous by providing a pointer to a
completion routine in the asynchf parameter.

P E R S I S T O R
I n s t r umen t s I nc.

47 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

QPBUnlockSlot -- Unlock PicoBus for unrestricted use.

Description: This function allows you to unlock the PicoBus after it has been locked by a specific slot.

Prototype: bool QPBUnlockSlot (QPB *qpb);

Inputs: qpb is a pointer to the slot structure that owns the current lock

Returns: Returns TRUE if the bus was successfully unlocked or FALSE if it was unable to unlock or the
given QPB structure was not the owner of the lock..

Notes: See QPBLockSlot for more information. It is necessary to lock the bus when performing
asynchronous reads using QPBRepeatAsynch.

P E R S I S T O R
I n s t r umen t s I nc.

48 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Real Time Clock Drivers and Functions

Real Time Clock Operation

The 68332 has no onboard Real Time Clock (RTC). The RTC function is provided by a Texas Instruments
MSP430 microcontroller which lives on the CF2 board with the 68332. The MSP430 is clocked by a 40 KHz
crystal, and powered by either the main supply or an off-board backup battery. The RTC crystal is a tuning
fork resonator with an initial accuracy of +/-20ppm with the parabolic temperature versus frequency curve
typical of these types of crystals. The MSP430 feeds this same signal to the 68332 PLL for system clock
generation.

Low-level software in the 68332 maintains communications with the MSP430. While the 68332 is on it
maintains its own internal clock which is synchronized with the MP430. When power is removed the MSP430
maintains time and continues to run from the lithium battery (this assumes you are using a Recipe Card).
When power is re-applied, the 68332 restarts and synchronizes its internal clock from the MSP430.

Elapsed and Countdown Timers

The countdown and elapsed time functions provide convenient methods for measuring short intervals or
waiting for a timeout. These functions work with and return values normalized to microseconds. Time is
measured with a fundamental unit of 40000 Hz.. Thus, the timer is internally counted as an integer number
of these ‘ticks’. One tick is approximately 25 µsecs and with a calling overhead for the functions that interact
with these counters of about 20 µsecs, the timers have an effective resolution of no less than 50 µsecs. The
elapsed and countdown timers have a maximum span of about 1.2 hours before overflowing. Below is an
example of usage:

 RTCTimer tmtest;
 ...
 RTCElapsedTimerSetup(&tmtest);
 < code block being measured >
 printf("Elapsed time %ld us \n", RTCElapsedTime(&tmtest));

RTCDelayMicroSeconds -- Delay for microseconds

Description: Provides a simple means to kill a specific amount of time, specified in microseconds. This
performs much the same function as RTCDelayTicks but takes its argument in microseconds.
The resolution of the calculation from microseconds to ticks which the real time clock can
measure is about 25 µsecs

Prototype: bool RTCDelayMicroSeconds (ulong d);

Inputs: d is a ulong containing the number of microseconds to wait before returning.

Returns:
Returns a boolean that is TRUE unless the clock is stopped at the time RTCDelayMicroSeconds
is called.

Notes: RTCDelayMicroSeconds behavior in the event that the RTC is stopped is dependent on the action
specified by RTCEnableErrTrap. Normally, it will simply return FALSE if the clock is stopped but if
error trapping is enabled by RTCEnableErrTrap then the machine will crash and print debug
information. Because internally the real time clock can only measure time in units of ticks, the
countdown is counted in an integer number of ticks. Because one tick is approximately 25 µsecs
and the calling overhead of the functions that interact with the clock is around 20 µsecs, delays
of less than 55 µsecs are meaningless and that RTCDelayMicroSeconds has an effective
resolution of 55 µsecs.

P E R S I S T O R
I n s t r umen t s I nc.

49 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

RTCElapsedTime -- Read the elapsed time (us)

Description: Read the elapsed time in microseconds

Prototype: ulong RTCElapsedTime(RTCTimer *rt);

Inputs: rt is a pointer to an RTCTimer struct that is preallocated and ready to be filled.

Returns: Returns the elapsed time in microseconds.

Notes: Because internally the real time clock can only measure time in units of ticks, the timer is
internally counted as an integer number of ticks then normalized to microseconds. Because one
tick is approximately 25 µsecs and the calling overhead of the functions that interact with these
counters is at least 20 µsecs, the timers have an effective resolution of no less than 55 µsecs.

RTCElapsedTimerSetup -- Setup and start an elapsed timer (us)

Description: Tells the real time clock to set up and start an ascending counter. The timer will immediately
begin counting up from zero in microseconds. Once RTCElapsedTimerSetup returns, use the
function RTCElapsedTime with the same RTCTimer struct to watch the counter.

Prototype: void RTCElapsedTimerSetup(RTCTimer *rt);

Inputs: rt is a pointer to an RTCTimer struct that is preallocated and ready to be filled.

Notes: See the Elapsed and Countdown Timers description at the top.

RTCGetTime -- Get both seconds and ticks

Description: The real time clock maintains two registers. One that keeps ticks (1/40000'ths of a second (for
approximately 25 µsec resolution) and one that keeps seconds.

Prototype: ulong RTCGetTime(ulong *seconds, ushort *ticks);

Inputs: seconds is a pointer to a ulong into which the current seconds counter will be placed.
ticks is a pointer to a ushort into which the current ticks count will be placed.

Returns: Returns a ulong containing just the seconds count. This is useful when you do not wish to create
placeholding variables.

Notes: If either or both of the pointers are NULL, the function will not write into the base of memory, it
will ignore the parameter and fill the other one, or if both are NULL, it will simply return the
seconds count. See RTCSetTime for UNIX epoch note.

RTCSetTime -- Set both seconds and ticks

Description: RTCSetTime loads values into the ticks and seconds registers that are provided in the argument
to the function. For standard operation these values should reflect the number of seconds and
the number of ticks since the UNIX epoch which is midnight Jan 1, 1970, although there is no
restriction that forces this to be true. RTCSetTime can be called regardless of whether the real
time clock is running or stopped. If the clock is running, RTCSetTime will set the time and keep
the clock running, as could be expected. If the clock is stopped, for instance if you wish to set
the clock based on an external event, RTCSetTime will load the given values into the registers
and then when/if the clock is started, it will continue to count from the values loaded.

Prototype: void RTCSetTime(ulong secs, ushort ticks);

Inputs: secs is a ulong that contains the value intended for the seconds register of the Real Time Clock
ticks is a ushort that contains the value intended for the ticks register of the Real Time Clock

P E R S I S T O R
I n s t r umen t s I nc.

50 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

RTCtime -- ANSI standard C library time() equivalent function

Description: This function returns the contents of the real time clock's seconds register. In a system with a
properly set clock, this will be equal to the number of seconds since midnight Jan 1, 1970. This
number is copied into the ulong pointed to by tp.

Prototype: ulong RTCtime(ulong *tp);

Inputs: tp is a pointer to a ulong where you wish the time to be placed on return.

Returns: Returns the contents of the real time clock's seconds register.

Notes: If tp is NULL, the function will not fail or write to the base of memory, it will simply do nothing
with the argument and return the contents of the real time clock's seconds register.

P E R S I S T O R
I n s t r umen t s I nc.

51 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Serial Controller Interface Drivers and Functions

Summary of Serial Interface Drivers and Functions
The Serial Controller Interface is the hardware subsystem that deals with all transactions over the main serial
port (UART).

SCIConfigure Set the baud rate and parity

SCIGetConfig Get the baud rate and parity

SCIRxBreak Return true if break is seen for at least millisecs

SCIRxFlush Delete any data in the receive queue

SCIRxGetByte Return the next word, wait if block is true

SCIRxGetChar Wait for, and return the next word

SCIRxGetCharWithTimeout Return next byte from receive queue with timeout

SCIRxHandshake Set receive flow control

SCIRxQueuedCount Return the number of characters in the receive queue

SCIRxSetBuffered Select buffered (true) or non-buffered receive

SCIRxTxIdle Return true if all Rx and Tx flags indicate idle

SCITxBreak Start (-1) , stop (0) , or send timed break (+ val)

SCITxFlush Delete any data in the transmit queue

SCITxHandshake Set transmit flow control

SCITxPutByte Transmit byte, wait if block is true

SCITxPutChar Transmit byte

SCITxQueuedCount Return the number of words in the transmit queue

SCITxSetBuffered Select buffered (true) or non-buffered transmit

SCITxWaitCompletion Wait for all transmission to complete

EIAAssertTXX Assert /TXX

EIACheckRXX Get State of /RXX

EIAEnableRx Enable RS232 receivers

EIAForceOff Force RS232 transmitters off

P E R S I S T O R
I n s t r umen t s I nc.

52 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

STDIO Warning

The ANSI C I/O libraries provided with the CF2 are, for the most part, even higher level wrappers to these
driver functions. However, in an effort of duplicate exactly the behavior of the ANSI stdio system, the stdio
functions often provide software buffering and queues. While you should feel free to use and inter-mingle
both these driver level functions and stdio functions, it should be noted that due to the software buffering
used by the stdio library, the outcome of intermingling these two groups of functions can yield unexpected
results. If you, as a developer, choose to use both libraries, you should be careful to flush the buffers of each
subsystem (driver calls and stdio) before using the other. Not doing so will not cause any fatal problems, but
can cause confusion. For instance, if you were using the stdio printf function, and then immediately followed it
with a driver call that also output data to the serial port, it is likely that the data output by the driver call
would appear on the serial port before the data printed with stdio printf.

Error Codes

Many of the driver calls, particularly those which deal with fetching a byte from the receive portion of the
main UART, return a short integer (16 bits) instead of a char (8 bits) as you might expect. The reason for this
is so that error information can be passed back with the character. The character fetched is always in the
LSB(low 8 bits) of the short so that if it is automatically typecast into a char, your character will survive and
only the error codes will be lost. Similarly, if a char is passed to a function that expects a short for the
purpose of holding error codes in the MSB, there should not be any unexpected behavior. In the MSB (high 8
bits) are error codes that are tested using the following masks:

enum {

 RxD_OR_MASK = 0x8000 // Overrun Error Flag
, RxD_NF_MASK = 0x4000 // Noise Error Flag
, RxD_FE_MASK = 0x2000 // Framing Error Flag
, RxD_PF_MASK = 0x1000 // Parity Error Flag
, RxD_BOV_MASK = 0x0800 // Buffer Overflow Flag
, RxD_TOSS_MASK = 0x0400 // Throw Away Flag (user sets)
, RxD_RPTF_MASK = 0x0200 // Repeat Filter Call Flag (user sets)
, RxD_ERR_MASK = 0xF800 // Any Error Flags
, RxD_DATA9_MASK = 0x01FF // Receive Data, 9 Bits
, RxD_DATA8_MASK = 0x00FF // Receive Data, 8 Bits
, RxD_DATA7_MASK = 0x007F // Receive Data, 7 Bits (ASCII)
, RxD_NO_DATA = 0xFCFF // Return value for no data available
};

By AND'ing any of these masks with the short that is returned with a given function, the user's application can
determine what, if any, error occurred during the operation.

_cfx_sercomm.h contains the error code enumeration.

P E R S I S T O R
I n s t r umen t s I nc.

53 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

SCIConfigure -- Set the baud rate and parity

Description: Sets the baud rate, parity, stop bits and auto-recalculation settings for the main UART. This is
the primary means by which a user's application can change the serial port settings.

Prototype: long SCIConfigure(long baud, char parity, bool autoTiming);

Inputs: baud is a long integer containing the desired baud rate
parity is a character containing a code to specify the parity and stop bits settings desired. The
codes are listed below.
autoTiming is a Boolean indicating whether or not you would like the SCI to recalculate the
baud rate in the event of a clock speed change. TRUE means do recalculate.

Returns: Returns a copy of the argument baud.

Notes: Parity codes are as follows:
'N' = '0' = '1' = No Parity and 1 Stop Bit
'2' = No Parity and 2 Stop Bits
'E' = Even Parity and 1 Stop Bit 'O' = Odd Parity and 1 Stop Bit

SCIGetConfig -- Get the baud rate and parity

Description: SCIGetConfig is used to extract the current settings of the SCI including baud rate and parity.
Parity and stop bit information is returned in the form of a character that corresponds to a code
which is described below. If either of the pointers passed to SCIGetConfig are NULL, the function
will not write to the base of memory, but rather ignore that parameter. It will always return the
baud rate, even if baudPtr is NULL.

Prototype: long SCIGetConfig(long *baudPtr, char *parityPtr);

Inputs: baudPtr is a pointer to a long where SCIGetConfig should put the returned baud rate.
parityPtr is a pointer to a character where SCIGetConfig should put the code which denotes the
current parity/stop bit setting.

Returns: Returns a long equal to the baud rate (equal to *baudPtr)

Notes: Parity is denoted by a character containing a code to specify the parity and stop bits settings.
The codes are as follows:
'N' = '0' = '1' = No Parity and 1 Stop Bit
'2' = No Parity and 2 Stop Bits
'E' = Even Parity and 1 Stop Bit 'O' = Odd Parity and 1 Stop Bit

SCIRxBreak -- Return true if break is seen for at least milliseconds

Description: This function can be called to determine if a long break signal is being received.

Prototype: bool SCITxBreak(short millisecs)

Inputs: millisecs is the length of the break for which you wish to test.

Returns: Returns a Boolean that is TRUE if a break of the specified length was received.

Notes: This function will return TRUE if the break signal is received for at least duration millisecs ms.
If the serial line was not in a break condition when the function is called, it will return FALSE
immediately.

P E R S I S T O R
I n s t r umen t s I nc.

54 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

SCIRxFlush -- Delete any data in the receive queue

Description: SCIRxFlush simply purges the receive queue and throws away any data contained therein.

Prototype: void SCIRxFlush(void)

SCIRxGetByte -- Return the next word, wait if block is true

Description: Retrieves one byte from the main UART.

Prototype: ushort SCIRxGetByte(bool block);

Inputs: block - a Boolean, TRUE if the call should wait until a byte has been received to return

Returns:
Returns a short, the LSB of which contains the byte gotten or -1 if block was FALSE and there
was not a byte available in the receive queue.

Notes: If block is TRUE and no characters are available, the function will wait until a character is
available before returning. If block is FALSE, and there are no characters are available it will
return -1. If a byte was received, the function will return that byte in the LSB of the short
returned. The MSB will contain error codes if applicable.

SCIRxGetChar -- Wait for, and return the next word

Description: This command waits for and returns the next byte from the UART. In the high byte of the short
returned are error codes, if applicable.

Prototype: short SCIRxGetChar(void);

Returns:
The character gotten from the UART is returned in the LSB of the short and the MSB contains
error codes.

Notes: See Error Codes.

SCIRxGetCharWithTimeout -- Return next byte from receive queue with timeout

Description: This command waits up to millisecs ms for the next character to arrive on the main UART.

Prototype: short SCIRxGetCharWithTimeout(short millisecs);

Inputs: millisecs - the number of milliseconds to wait for a character before returning an error.

Returns:
A short, the LSB of which contains the character gotten, or which equals -1 if the function times
out. In the high byte of the short returned are error codes, if applicable.

Notes: See Error Codes.

P E R S I S T O R
I n s t r umen t s I nc.

55 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

SCIRxHandshake -- Set receive flow control

Description: The BIOS SCI functions provide both hardware and software flow control options for both input
and output operations with the setup functions SCIRxHandshake() and SCITxHandshake() and
three enumerated setup constants.

Prototype: void SCIRxHandshake(short hshk, char xon, char xoff)

Inputs: hshk is the enumerated handshake selector (hshkOff by default)
xon is the character sent from the CF2 to resume transmission (CTRL-Q by default).
xoff is the character sent from the CF2 to pause transmission (CTRL-S by default)

Notes: Flow control can be OFF (hshkOff), ON using the auxiliary RS-232 control signals (hshkCtsRts),
or ON using definable XON/XOFF characters. Flow control is only supported when the input or
output drivers are working in buffered (interrupt driven) modes.

Input flow control, when enabled, tells the connected serial transmitting device to stop sending
data when the CF2's 2048 word input buffer gets to within 256 words of overflowing. This gives
the sender a minimum of 10ms at 230,400 BAUD to recognize the request and stop
transmitting. For hardware flow control, the stop mechanism is the negation of the RSTXX signal
(EIA negative). For software flow control, the stop mechanism is the transmission by the CF2 of
an XOFF character, which can be user defined, but is typically a control-S (0x13) character.

When the buffer empties to within 512 words of overflowing, the CF2 tells the transmitting
device that it's ok to resume sending data. This 256 words of hysteresis keeps from tying up
both the receiver and transmitter with flow control signals possibly accompanying each
character. For hardware flow control, the resume mechanism is the assertion of the RSTXX
signal (EIA positive). For software flow control, the stop mechanism is the transmission by the
CF2 of an XON character, which can be user defined, but is typically a control-Q (0x11)
character.

SCIRxQueuedCount -- Return the number of characters in the receive queue

Description: This function allows you to find out how many characters are waiting in the receive queue to be
received.

Prototype: short SCIRxQueuedCount(void);

Returns: Returns the number of characters currently in the receive queue.

Notes: In polled buffering mode this function will always return either 1 or 0 depending on the
existence of a character waiting in the UART receive register. In interrupt-driven buffering mode,
this function returns the number of characters waiting in the receive queue, up to the maximum,
2048.

SCIRxSetBuffered -- Select buffered (true) or non-buffered receive

Description: This function allows you to change the buffering scheme for the receive line of the main UART.

Prototype: void SCIRxSetBuffered(bool buffered);

Inputs: buffered - a Boolean used to specify the buffering mode desired. TRUE selects interrupt-driven
buffering mode and FALSE selects polled mode or non-buffered mode.

Notes: By specifying interrupt driven buffering mode, the CF2's internal BIOS buffering scheme is
activated providing an transparent receive buffer of 2048 characters. In polled buffering mode
the receive queue still "exists" but have a size of one character reflecting the fact that only the
internal UART registers are being used for buffering.

P E R S I S T O R
I n s t r umen t s I nc.

56 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

SCIRxTxIdle -- Return true if all Rx and Tx flags indicate idle

Description: Return TRUE if all Rx and Tx flags indicate idle

Prototype: bool SCIRxTxIdle(void);

Returns: Returns a boolean that is TRUE if both the transmit and receive sections of the UART are idle
and both queues are empty.

Notes: This could be used to determine if the UART is ready to be shut down.

SCITxBreak -- Start (-1) , stop (0) , or send timed break (+ val)

Description: Sets the UART to transmit a break condition for the specified duration or to start or stop an
indefinite break.

Prototype: void SCITxBreak(short millisecs)

Inputs: millisecs is the duration of the desired break in milliseconds. If it is -1 it will start an indefinite
break and return, if it is 0 it will stop an indefinite break and return.

SCITxFlush -- Delete any data in the transmit queue

Description: Empties the transmit buffer and throws away any data not yet transmitted out the UART.

Prototype: void SCITxFlush(void);

Notes: See STDIO Warning.

SCITxHandshake -- Set transmit flow control

Description: Set transmit flow control

Prototype: void SCITxHandshake(short hshk, char xon, char xoff)

Inputs: hshk is the enumerated handshake selector (hshkOff by default)
xon is the character sent to the CF2 to resume transmission (CTRL-Q by default).
xoff is the character sent to the CF2 to pause transmission (CTRL-S by default)

Notes: Flow control can be OFF (hshkOff), ON using the auxiliary RS-232 control signals (hshkCtsRts),
or ON using definable XON/XOFF characters. Flow control is only supported when the input or
output drivers are working in buffered (interrupt driven) modes.

The BIOS SCI functions provide both hardware and software flow control options for both input
and output operations with the setup functions SCIRxHandshake() and SCITxHandshake() and
three enumerated setup constants.

Output flow control, when enabled, lets the connected serial receiving device tell the CF2 to stop
sending data when the receiver's senses it is near overflow. For hardware flow control, the stop
mechanism is the detection of a negated RSRXX signal (EIA negative). For software flow control,
the stop mechanism is the receipt of an an XOFF character, which can be user defined, but is
typically a control-S (0x13) character.

The CF2 resumes transmitting when the receiving device tells the CF2 it's ok to resume sending
data. For hardware flow control, the resume mechanism is the detection by the CF2 of an
asserted RSRXX signal (EIA positive). For software flow control, the resume mechanism is the
receipt by the CF2 of an XON character, which can be user defined, but is typically a control-Q
(0x11) character.

P E R S I S T O R
I n s t r umen t s I nc.

57 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

SCITxPutByte -- Transmit byte, wait if block is true

Description: Transmits one byte out the main UART. If block is TRUE and the transmit buffer is full, the
function will wait until it is able to enqueue the byte before returning. If block is FALSE, and the
function cannot enqueue the byte it will return FALSE without enqueuing. If the byte was
enqueued or transmitted, the function will return TRUE.

Prototype: bool SCITxPutByte(ushort data, bool block)

Inputs: data - a short, the LSB of which should contain the byte you wish to send.
block - a Boolean, TRUE if the call should wait until byte has been sent to return

Returns:
Returns TRUE if byte was transmitted or FALSE if block was set to FALSE and the byte could not
be transmitted or enqueued (depending on buffering mode) immediately.

Notes: See Error Codes.

SCITxPutChar -- Transmit byte

Description: This function takes the LSB of data and puts it in the transmit queue of the main UART. If the
SCI is in polled mode, SCITxPutChar() will wait for the transmit queue to be empty and then
write the LSB of data to the main UART. The MSB of data is always ignored.

Prototype: void SCITxPutChar(ushort data);

Inputs: data is a ushort, the LSB of which is the character you wish to transmit.

SCITxQueuedCount -- Return the number of words in the transmit queue

Description: This function allows you to find out how many characters are waiting in the transmit queue.

Prototype: short SCITxQueuedCount(void);

Returns:

In polled buffering mode this function will always return either 1 or 0 depending on the
existence of a character waiting in the UART transmit register. In interrupt-driven buffering
mode, this function returns the number of characters waiting in the transmit queue, up to the
maximum, 512.

SCITxSetBuffered -- Select buffered (true) or non-buffered transmit

Description: This function allows you to change the buffering scheme for the transmit line of the main UART.

Prototype: void SCITxSetBuffered(bool buffered);

Inputs: buffered - a Boolean used to specify the buffering mode desired. TRUE selects interrupt-driven
buffering mode and FALSE selects polled mode or non-buffered mode.

Notes: By specifying interrupt driven buffering mode, the CF2's internal BIOS buffering scheme is
activated providing an transparent transmit buffer of 512 characters. In polled buffering mode
the transmit queue still "exists" but has a size of one character reflecting the fact that only the
internal UART registers are being used for buffering.

P E R S I S T O R
I n s t r umen t s I nc.

58 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

SCITxWaitCompletion -- Wait for all transmission to complete

Description: Waits for the transmit buffer to finish sending all characters in the buffer and then returns.

Prototype: void SCITxWaitCompletion(void);

EIAAssertTXX – Assert /TXX

Description: Assert /TXX

Prototype: bool EIAAssertTXX(bool set);

Inputs: TRUE = CMOS low and EIA pos., FALSE = CMOS high and EIA neg

Returns: ??

EIACheckRXX – Get State of /RXX

Description: Get State of /RXX

Prototype: bool EIACheckRXX(void);

Inputs: None

Returns: TRUE if /RXX is asserted (CMOS low, EIA positive)

EIAEnableRx – Enable RS232 receivers

Description: Enable RS232 receivers

Prototype: bool EIAEnableRx(bool enable);

Inputs: TRUE to enable FALSE to disable

Returns: returns the previous state

EIAForceOff – Force RS232 transmitters off

Description: Force RS232 transmitters off

Prototype: bool EIAForceOff(bool forceoff);

Inputs: Pass TRUE to turn the drivers off and FALSE to turn them on

Returns: Returns the previous state of the forced condition

P E R S I S T O R
I n s t r umen t s I nc.

59 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

System Clock Timing Functions

TMGGetSpeed – Get the system clock frequency

Description: Returns the system clock frequency in kHz.

Prototype: ushort TMGGetSpeed(void);

Inputs: None

Returns: Clock frequency in kHz.

TMGSetSpeed – Set the system clock frequency

Description: Changes the system clock to the frequency passed to it.

Prototype: ushort TMGSetSpeed(ushort kHz);

Inputs: kHz is Clock frequency in kHz.

Returns: The actual clock frequency set.

Notes: The system is clocked from a voltage-controlled oscillator controlled by a phase-locked loop
which is built into the 68332.

TMGSetSysClock – Set the system clock frequency with option lock wait disable

Description: Set the system clock frequency with option lock wait disable

Prototype: short TMGSetSysClock(ushort kHz, bool dontWaitLock);

Inputs:
kHz is Clock frequency in kHz.
dontWaitLock is TRUE if you wish execution to return immediately before the PLL re-locks on
the new frequency

Returns: Previous speed in kHz

TMGSetupCLKOUTPin – Setup the CLKOUT pin

Description: Setup the CLKOUT pin

Prototype: void TMGSetupCLKOUTPin(bool onRunning, bool onLPSTOP);

Inputs:

onRunning is a boolean that indicates whether CLKOUT should be on while the machine is
running

onLPSTOP is a boolean that indicates whether CLKOUT should be on while the machine is in
LPSTOP mode

Returns: Nothing

P E R S I S T O R
I n s t r umen t s I nc.

60 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Table Driven Command Processor Functions

CmdConfirm –Prompt for confirmation

Description: Prompt the user for confirmation. Any prompt and any character. Example:

Prototype: bool CmdConfirm(char *prompt, char trueReply);

Inputs:
*prompt is a string to display
trueReply is the character that will return a TRUE

Returns: TRUE or FALSE depending on if trueReply is received

Notes: Handles upper and lower case automatically. Example:
cprintf("CmdConfirm returned %s\n",
(CmdConfirm("’Y’ or ‘y’? for TRUE otherwise FALSE: ", 'Y'))?("TRUE"):("FALSE"));

CmdDispatch – Dispatch command

Description: Dispatch command with the options all contained in the CmdInfoPtr.

Prototype: char *CmdDispatch(CmdInfoPtr cip);

Inputs: cip is a pointer to the CmdInfoPtr structure

Returns: Pointer to command string

CmdExpectRange – Validate Range

Description: Return non-zero if the next two arguments specified by the argc index are numeric values, and
it places copies of the range in start and end.

Prototype: int CmdExpectRange(CmdInfoPtr cip, short index, long *start, long *end);

Inputs:

cip is a pointer to the CmdInfoPtr structure
index is the index to the arguments
*start is the start range
*end is the end range

Returns: Returns non-zero if the next two arguments specified by the argc index are numeric values

Notes: Note this function only works correctly if CmdExtractArgValues() has already been called.

CmdExpectValue – Validate and Get Value

Description: Returns non-zero if the specified argument index is a numeric value, and it places a copy of that
number in the variable value.

Prototype: int CmdExpectValue(CmdInfoPtr cip, short index, long *value);

Inputs: cip is a pointer to the CmdInfoPtr structure
index is the index into the arguments
*value get the argument

Returns: Returns 1 if the argument was extracted and zero otherwise

Notes: Note this function only works correctly if CmdExtractArgValues() has already been called.

P E R S I S T O R
I n s t r umen t s I nc.

61 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

CmdExtractArgValues – Say what

Description: This function converts the presumably numeric strings into values for direct manipulation. It
begins at the argument specified in first and continues through (inclusive) to the argument
specified in last. It uses the value in radix (2, 8, 10, 16) for the default number base, though
explicit prefixes will override the default. It returns non-zero only if all of the arguments in range
were numeric.

Prototype: int CmdExtractArgValues(CmdInfoPtr cip, short first, short last, short radix);

Inputs: cip is a pointer to the CmdInfoPtr structure
first is the first value
last is the last value
radix is the number base

Returns: Zero if there was an error and non-zero otherwise

CmdExtractAVDosSwitches – Extract DOS switches from command line

Description: Extracts DOS switches from a standard argc/**argv.

Prototype: short CmdExtractAVDosSwitches(short argc, char **argv, char *fmt, ...);

Inputs: ??

Returns: ??

CmdExtractCIDosSwitches – Say what

Description: Extracts DOS switches from CmdInfoPtr.

Prototype: short CmdExtractCIDosSwitches(CmdInfoPtr cip, char *fmt, ...);

Inputs: ??

Returns: ??

CmdIsDigit – Is passed digit valid under number base

Description: Determines if a digit passed is valid under a given number base . If the digit is valid it is
converted to its base 10 representation and saved at the location passed.

Prototype: int CmdIsDigit(short c, short base, short *val);

Inputs: c is the character to test
base is the number base to test the character with
*val is a pointer the converted value is written

Returns: 1 if the digit is valid and was converted zero otherwise

Notes:

P E R S I S T O R
I n s t r umen t s I nc.

62 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

CmdIsNumber– Is Command a Number

Description: Determines if argument is a number and returns it in *value.

Prototype: int CmdIsNumber(char **s, long *value, short base);

Inputs: **s is argv
*value is where the extracted number goes
base is the number base to test the character with

Returns: Returns TRUE if *s points to a valid number in any of the four common number bases and
leaves *s pointing to the terminating character else returns FALSE with s unchanged. If the
number is valid it is written to *value.

CmdParse – Parse command structure

Description: Parse command structure. This is used, for example, prior to a call to extract arguments and
switches.

Prototype: char *CmdParse(CmdInfoPtr cip);

Inputs: cip is a pointer to the CmdInfoPtr structure

Returns: Returns NULL if no errors, or a pointer to a string with the appropriate error message.

CmdSetNextCmd – Kill repeat commands with CR

Description: This is used inside of a command to prevent the command from being repeat-called with an
inadvertent <enter>. You do this by calling CmdSetNextCmd(cip, 0);.

Prototype: void CmdSetNextCmd(CmdInfoPtr cip, char *nextcmd);

Inputs:
cip is a pointer to the CmdInfoPtr structure
*nextcmd is a pointer to the next command when just a CR is entered.

Returns: Nothing

CmdStdBreak – Send a BREAK

Description: Returns a CMD_BREAK

Prototype: char *CmdStdBreak(CmdInfoPtr cip);

Inputs: cip is a pointer to the command info

Returns: This routine simply returns the special code CMD_BREAK

CmdStdCmdTest – Test Commands

Description: This is a great routine for debugging your own command handlers. If your custom handler is
misbehaving, feed this routine the same parameter strings, and it will decode and display the
various fields that your routine is working with.

Prototype: char *CmdStdCmdTest(CmdInfoPtr cip);

Inputs: cip is a pointer to the command info

Returns: Returns NULL if no errors, or a pointer to a string with the appropriate error message.

P E R S I S T O R
I n s t r umen t s I nc.

63 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

CmdStdErrText – Lookup Error Text

Description: Look up the error text associated with an error code.

Prototype: char *CmdStdErrText(short errID);

Inputs: errID is the error code to lookup

Returns: A pointer to the error text associated with the error code.

CmdStdHelp – Display a help menu

Description: This routine walks through the command table and generates a one or two column help menu
from the two text fields in each entry. It skip over entries with the empty string for the help
field, and it also skips over entries which have a lower privilege level than the current default.

Prototype: char *CmdStdHelp(CmdInfoPtr cip);

Inputs: cip is a pointer to the command info

Returns: Returns NULL if no errors, or a pointer to a string with the appropriate error message.

CmdStdLPGets – Line Input

Description: Line input function with edit.

Prototype: short CmdStdLPGets(char *linebuf, short linelen);

Inputs: *linebuf is the pointer to the buffer for input characters
linelen is the maximum length of linebuf

Returns: The number of characters entered into linebuf

CmdStdRun – Run the command processor

Description: This function simply makes an indirect call to the handler attached to the first entry in the
command table. This is almost always PDCCmdStdPicoRun.

Prototype: char *CmdStdRun(CmdInfoPtr cip);

Inputs: cip is a pointer to the command info

Returns: Returns NULL if no errors, or a pointer to a string with the appropriate error message.

CmdStdSetup – Sets up the Command Table prior to a CmdStdRun

Description: Given a pointer to a CmdInfo structure, this function sets up all of the fields with safe default
values in preparation for further standard interactive mode calls, using information from the
required pointer to the target command table. The altgets field allows you to choose the
standard C library gets() function by simply passing zero, or specify a more appropriate line
input function, perhaps with better line editing capabilities.

Prototype: void CmdStdSetup(CmdInfoPtr cip, CmdTablePtr ctp, short (*altgets)(char *, short));

Inputs: cip is a pointer to the command info
ctp is the command table
altgets is the get line function for the command processor to use

Returns: Nothing

P E R S I S T O R
I n s t r umen t s I nc.

64 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Time Processing Unit

Summary of TPU Drivers and Functions

TUBlockDuration Return expected block duration in ms at current baud

TUClose Close the specified port and release its memory

TUGetDefaultParams Return the default TPU UART open parameters

TUInit Initialize the TPU UART module

TUNotifyPostClockChange

TUNotifyPreClockChange

TUOpen Open a TPU UART port for serial communications

TURelease Close all ports then release all memory and resources allocated to TPU UARTs

TURxFlush Delete any data in the receive queue

TURxGetByte Wait for, and return the next word

TURxGetByteWithTimeout Return next word

TURxGetBlock Receive a block of bytes with timeout

TURxPeekByte Fetch Nth byte in receive queue without deleting

TURxQueuedCount Return the number of words in the receive queue

TUSetDefaultParams Setup new default TPU UART open parameters

TUTxFlush Delete any data in the transmit queue

TUTxPrintf Transmit using standard printf conventions

TUTxPutByte Send byte

TUTxPutBlock Transmit a block of bytes with timeout

TUTxQueuedCount Return the number of words in the transmit queue

TUTxWaitCompletion Wait for all transmission to complete

TUBlockDuration – Return expected block duration in ms at current baud

Description: word

Prototype: long TUBlockDuration(TUPort *tup, long bytes);

Inputs:
*tup is a pointer to the port
bytes is number of bytes for computation

Returns: Transmission duration in milliseconds

Notes:

P E R S I S T O R
I n s t r umen t s I nc.

65 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

TUClose – Close the specified port and release its memory

Description: word

Prototype: void TUClose(TUPort *tup);

Inputs: *tup is a pointer to the port

Returns: Nothing

Notes:

TUGetDefaultParams – Return the default TPU UART open parameters

Description: word

Prototype: TUChParams *TUGetDefaultParams(void);

Inputs: None

Returns: A pointer to a TUChParams struct containing the TPU UART parameters

Notes:
typedef struct
 {
 short bits; // data bits exclusive of start, stop, parity
 short parity; // parity: 'o','O','e','E', all else is none
 short autobaud; // automatically adjust baud when clock changes
 long baud; // baud rate
 short rxpri; // receive channel TPUPriority
 short txpri; // transmit channel TPUPriority
 short rxqsz; // receive channel queue buffer size
 short txqsz; // transmit channel queue buffer size
 short tpfbsz; // transmit channel printf buffer size
 } TUChParams;

TUInit – Initialize the TPU UART module

Description: Call this at the start of your program before opening TPU UART ports.

Prototype: void TUInit(Callocf *callocf, Freef *freef);

Inputs:
References to calloc and free functions used so that the TPU UART software can manage the
memory used by the port.

Returns: Nothing

TUNotifyPostClockChange –

Description:

Prototype: Void whatever (const char *format, ...);

Inputs:

Returns:

P E R S I S T O R
I n s t r umen t s I nc.

66 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

TUNotifyPreClockChange –

Description:

Prototype: void whatever (const char *format, ...);

Inputs:

Returns:

Notes:

TUOpen – Open a TPU UART port for serial communications

Description: Specify separate valid TPU channels (1 to 15) for receive and transmit. Specify -1 for rxch for a
transmit only port, -1 for txch for receive only.

Prototype: TUPort *TUOpen(short rxch, short txch, long baud, TUChParams *tp);

Inputs:

rxch is the receive TPU Channel Number
txch is the transmit TPU Channel Number
baud is the desired baud
*tp is a pointer to the TUChParams containing the channel parameters

Returns: A pointer to the port or NULL if an error occurs

Notes:

TURelease – Close all ports then release all memory and resources allocated to TPU UARTs

Description: This is done automatically when your program quits. You use it if you need to dynamically
reconfigure your systems TPUs.

Prototype: void TURelease(void);

Inputs: None

Returns: Nothing

TURxFlush – Delete any data in the receive queue

Description: Delete any data in the receive queue

Prototype: void TURxFlush(TUPort *tup);

Inputs: *tup is a pointer to the port

Returns: Nothing

TURxGetByte – Wait for, and return the next word

Description: Wait for, and return the next word

Prototype: short TURxGetByte(TUPort *tup, bool block);

Inputs:
*tup is a pointer to the port
block is TRUE if you want to wait for a character and FALSE if you do not wish to wait

Returns: The character

P E R S I S T O R
I n s t r umen t s I nc.

67 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

TURxGetByteWithTimeout – Return next word

Description: Return next word

Prototype: short TURxGetByteWithTimeout(TUPort *tup, short millisecs);

Inputs:
*tup is a pointer to the port
millisecs is the timeout value in milliseconds

Returns: Returns the next word or -1 on timeout

Notes:

TURxGetBlock – Receive a block of bytes with timeout

Description: Receive a block of bytes with timeout

Prototype: long TURxGetBlock(TUPort *tup, uchar *buffer, long bytes, short millisecs);

Inputs:

*tup is a pointer to the port
*buffer is a pointer to the buffer to hold the bytes
bytes is the maximum number of bytes
millisecs is the number of milliseconds to wait before timing out

Returns: The number of bytes read

Notes:

TURxPeekByte – Fetch Nth byte in receive queue without deleting

Description: Fetch Nth byte in receive queue without deleting

Prototype: short TURxPeekByte(TUPort *tup, short index);

Inputs:
*tup is a pointer to the port
index is the offset (index) within the input queue from which to extract the byte

Returns: The byte at the offset (index)

Notes:

TURxQueuedCount – Return the number of words in the receive queue

Description: Return the number of words in the receive queue

Prototype: short TURxQueuedCount(TUPort *tup);

Inputs: *tup is a pointer to the port

Returns: The number of words (bytes) in the receive queue

Notes:

P E R S I S T O R
I n s t r umen t s I nc.

68 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

TUSetDefaultParams – Setup new default TPU UART open parameters

Description: Setup new default TPU UART open parameters

Prototype: void TUSetDefaultParams(TUChParams *rp);

Inputs: *rp is a pointer to a TUChParams struct containing the new parameters

Returns: Nothing

Notes: The new setting will only apply to ports opened after the set call.

TUTxFlush – Delete any data in the transmit queue

Description: Delete any data in the transmit queue

Prototype: void TUTxFlush(TUPort *tup);

Inputs: *tup is a pointer to the port

Returns: Nothing

Notes:

TUTxPrintf – Transmit using standard printf conventions

Description: Transmit using standard printf conventions

Prototype: short TUTxPrintf(TUPort *tup, char * str, ...);

Inputs:
*tup is a pointer to the port
str is a standard printf format string and args

Returns: The number of characters written or negative if there was an error

Notes:

TUTxPutByte – Send byte

Description: Send byte

Prototype: bool TUTxPutByte(TUPort *tup, ushort data, bool block);

Inputs:
*tup is a pointer to the port
data is the byte to send
TRUE if you want to wait for a character and FALSE if you do not wish to wait

Returns:
Returns TRUE if the byte was sent and FALSE if the queue was full and if the block parameter
(ok to block/wait) was FALSE. In other words, it returns TRUE unless block is FALSE and the
queue is full preventing eventual transmission.

Notes:

P E R S I S T O R
I n s t r umen t s I nc.

69 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

TUTxPutBlock – Transmit a block of bytes with timeout

Description: Transmit a block of bytes with timeout

Prototype: long TUTxPutBlock(TUPort *tup, uchar *buffer, long bytes, short millisecs);

Inputs:

*tup is a pointer to the port
buffer is a pointer to the block of data to send
bytes is the number of bytes to send
millisecs is the number of milliseconds to wait before the function times-out

Returns: The number of bytes actually sent

Notes:

TUTxQueuedCount – Return the number of words in the transmit queue

Description: Return the number of words in the transmit queue

Prototype: short TUTxQueuedCount(TUPort *tup);

Inputs: *tup is a pointer to the port

Returns: The number of words (bytes) in the transmit queue

Notes:

TUTxWaitCompletion – Wait for all transmission to complete

Description: Wait for all transmission to complete

Prototype: void TUTxWaitCompletion(TUPort *tup);

Inputs: *tup is a pointer to the port

Returns: Nothing

Notes:

P E R S I S T O R
I n s t r umen t s I nc.

70 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Utility Functions

execstr -- Pass command string from running application to PicoDOS command shell

Description: Pass a command to the PicoDOS command shell.

Prototype: short execstr(char *cmdstr);

Inputs: cmdstr is a zero terminated C string containing the command and parameters just as would be
typed at the PicoDOS command prompt.

Returns: Returns enum { execstrNoCmdMatch = -1, execstrNoError = 0, execstrGeneralFailure = 1 };

Notes: Notes.

flogf -- printf to console and log file (after Initflogf())

Description: This function works like printf, except that it sends the formatted data to either, neither, or both
an append file and the stdout console. When working to the console, the flogf takes care of
checking the current state of the EIA driver and if it's off, turns it on while sending then turns it
back off when complete. Console writes also blocks until all characters have been sent.
Similarly, when writing to a file, flogf checks the current CF enable state and if it's off, turns it
on while writing, then back off. Each flogf targeting a file opens the file for append mode on
entry and closes and flushes the file on exit.

Prototype: short flogf(char *format, ...);

Inputs: format is identical to standard printf formats and variable arguments.

Returns: Returns the number of characters written.

Notes: Notes.

Initflog -- Setup for future flogf operations

Description: Setup for printf-like runtime logging to a file and/or the console.

Prototype: void Initflog(char *fname, bool echoToConsole);

Inputs: fname is a zero terminated C string contiaining the file or full path name to log/append future
flogf messages to.
echoToConsole is TRUE if flogf messages are to be echoed to the stdout console.

Returns: Returns nothing.

Notes: Pass zero for fname and TRUE for echoToConsole to just show messages on the console.

P E R S I S T O R
I n s t r umen t s I nc.

71 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

pdcfinfo -- Return PicoDOS file system size information (legacy support code)

Description: Return PicoDOS file system information with a CF8/AT8 compatable function call.

Prototype: short pdcfinfo(char *drive, long *size, long *free)PICO_CALL(pdcfinfo);

Inputs: drive is a string pointer in the form of "A:", "B:", etc.
size is a pointer to a long variable to hold the size of the media in bytes
free is a pointer to a long variable to hold the available free space in bytes

Returns: Returns zero on success or 1 if the named drive is not available.

Notes: New programs should use the PicoDOS DIR functions DIRFreeSpace and DIRTotalSpace.

picodosver -- Return a string containing PicoDOS version information
(legacy support code)

Description: Return PicoDOS version information with a CF8/AT8 compatable function call.

Prototype: char * picodosver(void);

Inputs: Nothing

Returns:
Returns a C string in the form "nnnnn-v.rs" where nnnnn is the serial number, v is the current
version of PicoDOS, r is the release level, and s is the sub-release level.

Notes: New programs should use the BIOS global variables for this information:
 BIOSGVT.CF2SerNum
 BIOSGVT.BIOSVersion
 BIOSGVT.BIOSRelease
 BIOSGVT.PICOVersion
 BIOSGVT.PICORelease

sscandate -- scan date string into year, mon, and mday fields of struct tm

Description: This is a general purpose date string parser that accomodates a variety of date specification
styles.

Prototype: short sscandate(const char *str, struct tm *ptm, DateFieldOrder dfo);

Inputs: str is a zero terminated C string containing date in the form:

YEAR<delim>MONTH<delim>DAY (specifying enum YYMMDD)
MONTH<delim>DAY<delim>YEAR (specifying enum MMYYDD)
DAY<delim>MONTH<delim>YEAR (specifying enum DDMMYY)

<delim> may be any single comma, space, dash, period, or slash.
YEAR may a full 4 digits or 2 digits assumed between 1970 and 2069
MONTH may be 1-12, full text (January, February, ..., December) or three character
abbreviations.

ptm is a standard C library tm structure from <time.h> with fields tm_year, tm_mon, and
tm_mday filled in from the scan.

Returns: Returns the lenght of the scanned string or zero if the string is invalid.

Notes: This routine is used by the PicoDOS QRdate and QRdatetime query/reply functions.
typedef enum { YYMMDD // ISO
 , MMDDYY // US
 , DDMMYY // European
 } DateFieldOrder;

P E R S I S T O R
I n s t r umen t s I nc.

72 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

sscantime -- scan time string into hour, min, and sec fields of struct tm

Description: This is a general purpose time string parser.

Prototype: short sscantime(const char *str, struct tm *ptm);

Inputs: str is a zero terminated C string containing time in the form:
HOURS<delim>MINUTES<delim>SECONDS and optional AM or PM for 12 hour time.
<delim> may be any single comma, space, dash, period, or slash.

ptm is a standard C library tm structure from <time.h> with fields tm_hour, tm_min, and
tm_secs filled in from the scan.

Returns: Returns the lenght of the scanned string or zero if the string is invalid.

Notes: This routine is used by the PicoDOS QRtime and QRdatetime query/reply functions.

P E R S I S T O R
I n s t r umen t s I nc.

73 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

Virtual EEPROM Functions

Summary of VEE Functions

VEECheck Check the Virtual EEPROM and return free size if OK

VEEClear Clear the entire Virtual EEPROM

VEEDelete Delete a Virtual EEPROM variable

VEEFetchFloat Return float value from Virtual EEPROM

VEEFetchLong Return long value from Virtual EEPROM

VEEFetchNext Find the next valid VEE entry (NULL to start)

VEEFetchStr Return C string from Virtual EEPROM

VEEFetchVar Fetch a Virtual EEPROM variable

VEEGetData Return pointer to VEE variable data field or zero

VEEGetName Return VEE variable name or null string pointer ("\0")

VEEStoreFloat Store float data to Virtual EEPROM

VEEStoreLong Store long data to Virtual EEPROM

VEEStoreStr Store string data to Virtual EEPROM

VEECheck -- Check the Virtual EEPROM and return free size if OK

Description: Confirms VEE internal data structures and returns the free space in bytes or -1 if there is an
error

Prototype: short VEECheck(void);

Inputs: None.

Returns: Returns zero or one of the enumerated VEE error codes.

VEEClear -- Clear the entire Virtual EEPROM

Description: Delete the entire virtual eeprom.

Prototype: bool VEEClear(void);

Inputs: None.

Returns: Returns TRUE if successful.

Notes: This erases the entire VEE except for a single byte that is copied and retained for the PBM
startup vector. Use this only to fix unrecoverable problems that could happen if an applicaition
program corrupts the VEE flash.

P E R S I S T O R
I n s t r umen t s I nc.

74 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

VEEDelete -- Delete a Virtual EEPROM variable

Description: Delete a virtual eeprom variable.

Prototype: bool VEEDelete(char *name);

Inputs: name is a pointer to a zero terminated C string of up to 15 characters that locates the entry.

Returns: Returns TRUE if found and successful, FALSE if not found or the VEE is locked.

VEEFetchFloat -- Return float value from Virtual EEPROM

Description: Return either a float value found in the virtual eeprom or a default value.

Prototype: float VEEFetchFloat(char *name, float fallback);

Inputs: name is a pointer to a zero terminated C string of up to 15 characters that identifies the entry.
fallback is a float used as a default fallback if the vee search fails to find the veename entry

Returns: Returns a four byte float value.

Notes: The eeprom entry may be either a float value or a string that evaluates to a float value (uses
atof())

VEEFetchLong -- Return long value from Virtual EEPROM

Description: Return either a signed long value found in the virtual eeprom or a default value.

Prototype: long VEEFetchLong(char *name, long fallback);

Inputs: name is a pointer to a zero terminated C string of up to 15 characters that identifies the entry.
fallback is a signed long used as a default fallback if the vee search fails to find the veename
entry

Returns: Returns a signed long value.

Notes: The eeprom entry may be either a long value or a string that evaluates to a long value (uses
atol())

VEEFetchNext -- Find the next valid VEE entry (NULL to start)

Description: Return the next sequential VEEVar entry.

Prototype: VEEVar VEEFetchNext(VEEVar *prev);

Inputs: prev is a pointer to a VEEVar structure, or zero to find the first.

Returns: Returns a pointer to the next VEEVar structure or zero if there are no more.

Notes: Used to iterate through the VEE for a list of directory of VEE entries.

P E R S I S T O R
I n s t r umen t s I nc.

75 of 77 CF2 API Reference

1/29/2003

CF2 API Reference

VEEFetchStr -- Return C string from Virtual EEPROM

Description: Return either a signed long value found in the virtual eeprom or a default value.

Prototype: char *VEEFetchStr(char *name, char *fallback);

Inputs: name is a pointer to a zero terminated C string of up to 15 characters that identifies the entry.
fallback is a C string used as a default fallback if the vee search fails to find the veename entry

Returns: Returns a C string.

Notes:

VEEFetchVar -- Fetch a Virtual EEPROM variable

Description: Return a pointer to a VEEVar structure.

Prototype: VEEVar VEEFetchVar(char *name);

Inputs: name iis a pointer to a zero terminated C string of up to 15 characters that locates the entry.

Returns: Returns a pointer to a VEEVar structure or zero if the requested name can't be found.

Notes: You can determine the type of data from the type field, and access the name and stored data
using the companion VEEGetName and VEEGetData functions.

VEEGetData -- Return pointer to VEE variable data field or zero

Description: Given a VEEVar structure pointer, return a pointer to its data field, which is guaranteed to begin
on an even boundary.

Prototype: void* VEEGetData(VEEVar *vvp, short *size);

Inputs: vvp is a pointer to a VEEVar structure from VEEFetchVar, VEELookup, or VEEFetchNext.
size is an optional (not used if its zero) pointer to a short to hold the size of the data field in
bytes.

Returns: Returns a non-zero pointer or zero if there is a problem.

Notes:

VEEGetName -- Return VEE variable name or null string pointer ("\0")

Description: Given a VEEVar structure pointer, return a pointer to its zero terminated C string.

Prototype: char* VEEGetName(VEEVar *vvp);

Inputs: vvp is a pointer to a VEEVar structure from VEEFetchVar, VEELookup, or VEEFetchNext.

Returns: Returns a pointer to a zero terminated C string or zero if there is a problem.

Notes: Notes.

P E R S I S T O R
I n s t r umen t s I nc.

76 of 77 CF2 API Reference

1/29/2003

P E R S I S T O R
I n s t r umen t s I nc.

CF2 API Reference

77 of 77 CF2 API Reference

1/29/2003

VEEStoreFloat -- Store float data to Virtual EEPROM

Description: Store a 32 bit IEEE floating point binary value (C float) into the virtual eeprom.

Prototype: bool VEEStoreFloat(char *name, float fvalue);

Inputs: name is a pointer to a zero terminated C string of up to 15 characters that identifies the entry.
fvalue is

Returns: Returns TRUE if successful.

Notes: If a VEE variable with the same name already exists, it will be deleted to make room for the new
one.

VEEStoreLong -- Store long data to Virtual EEPROM

Description: Store a 32 bit long binary value (C long or ulong) into the virtual eeprom.

Prototype: bool VEEStoreLong(char *name, long lvalue);

Inputs: name is a pointer to a zero terminated C string of up to 15 characters that identifies the entry.
lvalue is the 32 bit binary value to store

Returns: Returns TRUE if successful.

Notes: If a VEE variable with the same name already exists, it will be deleted to make room for the new
one.

VEEStoreStr -- Store string data to Virtual EEPROM

Description: Store a zero terminated C string into the virtual eeprom.

Prototype: bool VEEStoreStr(char *name, char *str);

Inputs: name is a pointer to a zero terminated C string of up to 15 characters that identifies the entry.
str is zero terminated C string

Returns: Returns TRUE if successful.

Notes: If a VEE variable with the same name already exists, it will be deleted to make room for the new
one.

	ATA Device Drivers
	ATACapacity -- Return the PC Card capacity in total sectors
	ATAReadSectors -- Read logical drive sector(s)
	ATAWriteSectors -- Write logical drive sector(s)
	ATA functions – Additional Notes

	BigIDEA IDE Driver
	BIAGetDriver -- Return the low level BigIDEA driver (for the ATA driver)
	BIAGetStatusString -- Return the current drive status
	BIAPowerUp -- Power up the BigIDEA and spin up the drive
	BIAShutDown -- Turn off the drive and power down the BigIDEA

	BIOS Functions
	BIOSHandlerAddress -- Return a BIOS handlers actual address
	BIOSPatchInsert -- Insert a new handler in the BIOS table
	BIOSReset -- Reset the Persistor
	BIOSResetToPicoDOS -- Reset the Persistor and force to PicoDOS
	BIOSVersionCheck -- Confirm application and BIOS compatability

	Checksums and Cyclic Redundancy Check Functions
	Summary of functions
	CheckSum16 -- Update a running 16 bit checksum
	CheckSum16Block -- Compute a 16 bit checksum for a block of data
	CheckSum32 -- Update a running 32 bit checksum
	CheckSum32Block -- Compute a 32 bit checksum for a block of data
	CRC16 -- Update a running 16 bit CCITT CRC
	CRC16Block -- Compute a 16 bit CCITT CRC for a block of data
	CRC32 -- Update a running 32 bit CCITT CRC
	CRC32Block -- Compute a 32 bit CCITT CRC for a block of data
	CRCInit -- Initialize the CRC tables

	Chip Select Wrapper Functions
	CS10isEClock -- Define CS10 for its alternate ECLOCK function (default is chip select)
	CS10Options -- Define the CS10 R/W access and wait states
	CS10Setup -- Setup CS10
	CS10GetWaits -- Return the wait states setting for CS10
	CS8Options -- Define the CS8 R/W access and wait states
	CS8Setup -- Setup CS8
	CS8GetWaits -- Return CS8 wait states setting for CS8

	CompactFlash Low Level Drivers
	CFCardDetect -- Return true if a card is inserted
	CFEnable -- Enable or disable the CompactFlash card to save power
	CFGetDriver -- Return the low level CompactFlash driver (for the ATA driver)

	Console I/O Functions and Macros
	CIOdrain – Wait for all transmissions to complete
	CIOgetc – Wait for, and return the next character
	CIOgetq – Return non-zero count if input data is
	CIOgets – Input line with minimal editing feature
	CIOhexdump – Dump memory in hex and ASCII to the
	CIOiflush – Flush any pending input data
	CIOoflush – Discard any queued transmit character
	CIOprintf – Simple printf to console
	CIOputc – Send a character
	CIOputs – Send zero terminated string
	getch -- Wait for and return the next byte
	kbflush -- Empty the input buffer and return
	�
	kbhit -- Detect the availability of a character on the UART
	putch -- Writes a byte out the main UART
	putflush -- Wait for all transmission to complete.
	putstr -- Write a NULL terminated string to the main UART
	uprintf -- A clone of stdio's printf without floating point support
	STDIO Warning

	DOS Directory Functions
	DIRFindFirst -- Find first directory entry starting at path
	DIRFreeSpace -- Return free space on specified drive
	DIRFindEnd -- Conclude directory search
	DIRFindNext -- Find next directory entry
	DIRMatchName -- Return true if filename matches ambiguous pattern
	DIRTotalSpace -- Return total space on specified drive

	Interrupt and Exception Vector Wrapper Functions
	IEV_C_FUNCT -- Define C Interrupt Handler Function
	IEV_C_PROTO -- Declare C Interrupt Handler Function Prototype
	IEVInsertAsmFunct -- Install an assembler function into the VBR
	IEVInsertCFunct -- Install a C function into the vector table

	LED Signal Functions ��LEDGetState -- Return the current LED state
	LEDInit -- Setup the LED drivers (turns both off)
	LEDOrbit -- Orbit the LEDs on each call
	LEDSetState -- Set the LED state
	LEDToggleRG -- Toggle LED between Red and Green
	LEDToggleRGOff -- Toggle LED between Red, Green, and Off

	Periodic Interrupt Timer Functions
	PITAddChore -- Add a periodic interrupt chore
	PITInit -- Initialize the periodic interrupt timer
	PITPeriod -- Return PIT period setting in microseconds, zero if off
	PITRemoveChore -- Remove a periodic interrupt chore (NULL vfptr for all)
	�
	PITSet100usPeriod -- Set periodic interrupt timer period in 100us ticks
	PITSet51msPeriod -- Set periodic interrupt timer period in 51ms ticks

	PicoDOS Initialization and Coordination Functions
	_PICOHandlerAddress -- Return a PICO handlers actual address
	_PICOPatchInsert -- Insert a new handler in the PICO table
	PICOMemAllocRegister -- Give PicoDOS access to application memory

	PicoZOOM Functions
	PZCacheFlush -- Flush cached data to the storage media
	PZCacheSetup -- Setup PicoZOOM cache and optimizations
	PZCacheRelease -- Conclude (flush) and free PicoZOOM cache memory

	Pin I/O Drivers, Functions, and Macros
	PinBus -- Make an I/O pin perform its bus function (varies)
	PinClear -- Configure I/O pin as output and set low
	�
	PinIO -- Make an I/O pin perform its digital I/O function
	PinMirror -- Read an I/O pin, then configure as an output at the level read
	PinRead -- Configure I/O pin as input and read level
	PinSet -- Configure I/O pin as output and set high
	�
	PinTestIsItBus -- Is a pin performing its bus function
	PinToggle -- Configure I/O pin as output and toggle current level
	PinWrite -- Configure I/O pin as output and write level
	PIOBusFunct -- Make an I/O pin perform its alternate function (varies)
	PIOClear -- Configure I/O pin as output and set low
	PIOMirror -- Read an I/O pin, then configure as an output at the level read
	PIOMirrorList -- Read I/O pins, then configure as an output at the level read
	PIORead -- Configure I/O pin as input and read level
	PIOSet -- Configure I/O pin as output and set high
	PIOTestAssertClear -- Return true if I/O pin is currently an output asserting low
	PIOTestAssertSet -- Return true if I/O pin is currently an output asserting high
	PIOToggle -- Configure I/O pin as output and toggle current level
	PIOWrite -- Configure I/O pin as output and write level

	Ping-Pong Buffer Functions
	PPBCheckRdAvail -- Return the number of bytes waiting to be read
	PPBCheckWrFree -- Return the free space left before a wrap
	PPBClose -- Close a ping-pong buffer (does not automatically flush)
	�
	PPBFlush -- Flush a ping-pong buffer and force a ping-pong flip
	PPBGetMemBuf -- Return the read buffer and optionally zero the size
	PPBOpen -- Open and initialize a ping-pong buffer
	PPBPutByte -- Write 8-bit byte into the ping-pong buffer
	�
	PPBPutWord -- Write 16-bit word into the ping-pong buffer
	PPBRead -- Read data from the ping-pong buffer
	PPBWrite -- Write data into the ping-pong buffer

	Power Management Drivers and Functions
	LPStop – Executes LPSTOP with options previously

	LPStopCSE – Execute LPSTOP and set the passed bit
	QSMRun – Start the Queued Serial Module
	QSMStop – Stop the Queued Serial Module
	PWRLPStopSetup – Setup LPSTOP CLKOUT driven
	PWRSuspendSecs – Delay in suspend mode for a numb
	�
	PWRSuspendUntil – Delay in suspend mode until a f
	PWRPreChgAddChore – Add a power pre-change chore
	PWRPreChgRemoveChore – Remove a power pre-change
	PWRPostChgAddChore – Add a power post-change chor
	PWRPostChgRemoveChore – Remove a power post-chang

	Query/Reply Functions
	QRchar -- Query/Reply for character using: %c
	QRconfirm -- Query/Reply for Y/N confirmation
	QRdate -- Query/Reply for date
	QRdatetime -- Query/Reply for date and time
	�
	QRdouble -- Query/Reply for double using: %lf %le %lE %lg %lG
	QRfloat -- Query/Reply for float using: %f %e %E %g %G
	QRlong -- Query/Reply for long using: %li %ld %lu %lo
	QRshort -- Query/Reply for short using: %i %hi %d %hd %u %hu %o %ho
	QRstring -- Query/Reply for string using: %s
	QRtime -- Query/Reply for time
	QRulong -- Query/Reply for ulong using: %li %ld %lu %lo
	QRushort -- Query/Reply for ushort using: %i %hi %d %hd %u %hu %o %ho

	Queued PicoBUS (QSPI) Drivers and Functions
	QPBClearBusy -- Clear busy flag
	QPBClearInterrupt -- Clear the QPB interrupt flag
	�
	QPBFreeSlot -- Remove a PicoBUS device slot
	QPBInitSlot -- Initialize a PicoBUS device slot
	QPBLockSlot -- Lock and return true if slot available for exclusive use
	QPBRepeatAsync -- Execute a pre-set-up asynchronous transfer
	QPBSetup -- Set up the QPB for future asynchronous transfers
	QPBTestBusy -- Set up the QPB for future asynchronous transfers
	QPBTestLocked -- See if the QPB is locked
	QPBTransact -- Conduct a PicoBUS session
	QPBUnlockSlot -- Unlock PicoBus for unrestricted use.

	Real Time Clock Drivers and Functions
	Real Time Clock Operation
	Elapsed and Countdown Timers
	RTCDelayMicroSeconds -- Delay for microseconds
	�
	RTCElapsedTime -- Read the elapsed time (us)
	RTCElapsedTimerSetup -- Setup and start an elapsed timer (us)
	RTCGetTime -- Get both seconds and ticks
	RTCSetTime -- Set both seconds and ticks
	RTCtime -- ANSI standard C library time() equivalent function

	Serial Controller Interface Drivers and Functions
	STDIO Warning
	Error Codes
	�
	SCIConfigure -- Set the baud rate and parity
	SCIGetConfig -- Get the baud rate and parity
	SCIRxBreak -- Return true if break is seen for at least milliseconds
	�
	SCIRxFlush -- Delete any data in the receive queue
	SCIRxGetByte -- Return the next word, wait if block is true
	SCIRxGetChar -- Wait for, and return the next word
	SCIRxGetCharWithTimeout -- Return next byte from receive queue with timeout
	�
	SCIRxHandshake -- Set receive flow control
	SCIRxQueuedCount -- Return the number of characters in the receive queue
	SCIRxSetBuffered -- Select buffered (true) or non-buffered receive
	SCIRxTxIdle -- Return true if all Rx and Tx flags indicate idle
	SCITxBreak -- Start (-1) , stop (0) , or send timed break (+ val)
	SCITxFlush -- Delete any data in the transmit queue
	SCITxHandshake -- Set transmit flow control
	SCITxPutByte -- Transmit byte, wait if block is true
	SCITxPutChar -- Transmit byte
	SCITxQueuedCount -- Return the number of words in the transmit queue
	SCITxSetBuffered -- Select buffered (true) or non-buffered transmit
	�
	SCITxWaitCompletion -- Wait for all transmission to complete
	EIAAssertTXX – Assert /TXX
	EIACheckRXX – Get State of /RXX
	EIAEnableRx – Enable RS232 receivers
	EIAForceOff – Force RS232 transmitters off

	System Clock Timing Functions
	TMGGetSpeed – Get the system clock frequency
	TMGSetSpeed – Set the system clock frequency
	TMGSetSysClock – Set the system clock frequency w
	TMGSetupCLKOUTPin – Setup the CLKOUT pin

	Table Driven Command Processor Functions
	CmdConfirm –Prompt for confirmation
	CmdDispatch – Dispatch command
	CmdExpectRange – Validate Range
	CmdExpectValue – Validate and Get Value
	CmdExtractArgValues – Say what
	CmdExtractAVDosSwitches – Extract DOS switches fr
	CmdExtractCIDosSwitches – Say what
	CmdIsDigit – Is passed digit valid under number b
	CmdIsNumber– Is Command a Number
	CmdParse – Parse command structure
	CmdSetNextCmd – Kill repeat commands with CR
	CmdStdBreak – Send a BREAK
	CmdStdCmdTest – Test Commands
	CmdStdErrText – Lookup Error Text
	CmdStdHelp – Display a help menu
	CmdStdLPGets – Line Input
	CmdStdRun – Run the command processor
	CmdStdSetup – Sets up the Command Table prior to

	Time Processing Unit
	TUBlockDuration – Return expected block duration
	TUClose – Close the specified port and release it
	TUGetDefaultParams – Return the default TPU UART
	TUInit – Initialize the TPU UART module
	TUNotifyPostClockChange –
	TUNotifyPreClockChange –
	TUOpen – Open a TPU UART port for serial communic
	TURelease – Close all ports then release all memo
	TURxFlush – Delete any data in the receive queue
	TURxGetByte – Wait for, and return the next word
	TURxGetByteWithTimeout – Return next word
	TURxGetBlock – Receive a block of bytes with time
	TURxPeekByte – Fetch Nth byte in receive queue wi
	TURxQueuedCount – Return the number of words in t
	�
	TUSetDefaultParams – Setup new default TPU UART o
	TUTxFlush – Delete any data in the transmit queue
	TUTxPrintf – Transmit using standard printf conve
	TUTxPutByte – Send byte
	�
	TUTxPutBlock – Transmit a block of bytes with tim
	TUTxQueuedCount – Return the number of words in t
	TUTxWaitCompletion – Wait for all transmission to

	Utility Functions
	execstr -- Pass command string from running application to PicoDOS command shell
	flogf -- printf to console and log file (after Initflogf())
	Initflog -- Setup for future flogf operations
	pdcfinfo -- Return PicoDOS file system size information (legacy support code)
	picodosver -- Return a string containing PicoDOS version information �(legacy support code)
	sscandate -- scan date string into year, mon, and mday fields of struct tm
	sscantime -- scan time string into hour, min, and sec fields of struct tm

	Virtual EEPROM Functions
	VEECheck -- Check the Virtual EEPROM and return free size if OK
	VEEClear -- Clear the entire Virtual EEPROM
	�
	VEEDelete -- Delete a Virtual EEPROM variable
	VEEFetchFloat -- Return float value from Virtual EEPROM
	VEEFetchLong -- Return long value from Virtual EEPROM
	VEEFetchNext -- Find the next valid VEE entry (NULL to start)
	�
	VEEFetchStr -- Return C string from Virtual EEPROM
	VEEFetchVar -- Fetch a Virtual EEPROM variable
	VEEGetData -- Return pointer to VEE variable data field or zero
	VEEGetName -- Return VEE variable name or null string pointer ("\0")
	�
	VEEStoreFloat -- Store float data to Virtual EEPROM
	VEEStoreLong -- Store long data to Virtual EEPROM
	VEEStoreStr -- Store string data to Virtual EEPROM

